5,330 research outputs found
A First Step Towards Automatically Building Network Representations
To fully harness Grids, users or middlewares must have some knowledge on the
topology of the platform interconnection network. As such knowledge is usually
not available, one must uses tools which automatically build a topological
network model through some measurements. In this article, we define a
methodology to assess the quality of these network model building tools, and we
apply this methodology to representatives of the main classes of model builders
and to two new algorithms. We show that none of the main existing techniques
build models that enable to accurately predict the running time of simple
application kernels for actual platforms. However some of the new algorithms we
propose give excellent results in a wide range of situations
Local Electronic Structure of a Single Magnetic Impurity in a Superconductor
The electronic structure near a single classical magnetic impurity in a
superconductor is determined using a fully self-consistent Koster-Slater
algorithm. Localized excited states are found within the energy gap which are
half electron and half hole. Within a jellium model we find the new result that
the spatial structure of the positive-frequency (electron-like) spectral weight
(or local density of states), can differ strongly from that of the negative
frequency (hole-like) spectral weight. The effect of the impurity on the
continuum states above the energy gap is calculated with good spectral
resolution for the first time. This is also the first three-dimensional
self-consistent calculation for a strong magnetic impurity potential.Comment: 13 pages, RevTex, change in heuristic picture, no change in numerical
result
Anomalous Behavior near T_c and Synchronization of Andreev Reflection in Two-Dimensional Arrays of SNS Junctions
We have investigated low-temperature transport properties of two-dimensional
arrays of superconductor--normal-metal--superconductor (SNS) junctions. It has
been found that in two-dimensional arrays of SNS junctions (i) a change in the
energy spectrum within an interval of the order of the Thouless energy is
observed even when the thermal broadening far exceeds the Thouless energy for a
single SNS junction; (ii) the manifestation of the subharmonic energy gap
structure (SGS) with high harmonic numbers is possible even if the energy
relaxation length is smaller than that required for the realization of a
multiple Andreev reflection in a single SNS junction. These results point to
the synchronization of a great number of SNS junctions. A mechanism of the SGS
origin in two-dimensional arrays of SNS junctions, involving the processes of
conventional and crossed Andreev reflection, is proposed.Comment: 5 pages, 5 figure
Quasiparticle scattering and local density of states in the d-density wave phase
We study the effects of single-impurity scattering on the local density of
states in the high- cuprates. We compare the quasiparticle interference
patterns in three different ordered states: d-wave superconductor (DSC),
d-density wave (DDW), and coexisting DSC and DDW (DSC-DDW). In the coexisting
state, at energies below the DSC gap, the patterns are almost identical to
those in the pure DSC state with the same DSC gap. However, they are
significantly different for energies greater than or equal to the DSC gap. This
transition at an energy around the DSC gap can be used to test the nature of
the superconducting state of the underdoped cuprates by scanning tunneling
microscopy. Furthermore, we note that in the DDW state the effect of the
coherence factors is stronger than in the DSC state. The new features arising
due to DDW ordering are discussed.Comment: 6 page, 5 figures (Higher resolution figures are available by
request
Inelastic diffraction and color-singlet gluon-clusters in high-energy hadron-hadron and lepton-hadron collisions
It is proposed, that ``the colorless objects'' which manifest themselves in
large-rapidity-gap events are color-singlet gluon-clusters due to
self-organized criticality (SOC), and that optical-geometrical concepts and
methods are useful in examing the space-time properties of such objects. A
simple analytical expression for the -dependence of the inelastic single
diffractive cross section ( is the four-momentum transfer
squared) is derived. Comparison with the existing data and predictions for
future experiments are presented. The main differences and similarities between
the SOC-approach and the ``Partons in the Pomeron (Pomeron and
Reggeon)''-approach are discussed.Comment: 12 pages, 2 figure
Extended Impurity Potential in a d_{x^2-y^2} Superconductor
We investigate the role of a finite potential range of a nonmagnetic impurity
for the local density of states in a d_{x^2-y^2} superconductor. Impurity
induced subgap resonances are modified by the appearance of further scattering
channels beyond the --wave scattering limit. The structure of the local
density of states (DOS) in the vicinity of the impurity is significantly
enhanced and therefore improves the possibility for observing the
characteristic anisotropic spatial modulation of the local DOS in a d_{x^2-y^2}
superconductor by scanning tunneling microscopy.Comment: 4 pages, Revtex, with 4 embedded eps figures. Submitted to Phys. Rev.
Let
Non-magnetic impurities in two dimensional superconductors
A numerical approach to disordered 2D superconductors described by BCS mean
field theory is outlined. The energy gap and the superfluid density at zero
temperature and the quasiparticle density of states are studied. The method
involves approximate self-consistent solutions of the Bogolubov-deGennes
equations on finite square lattices. Where comparison is possible, the results
of standard analytic approaches to this problem are reproduced. Detailed
modeling of impurity effects is practical using this approach. The {\it range}
of the impurity potential is shown to be of {\it quantitative importance} in
the case of strong potential scatterers. We discuss the implications for
experiments, such as the rapid suppression of superconductivity by Zn doping in
Copper-Oxide superconductors.Comment: 16 pages, latex, 8 figures( available upon request
The interplay between electron-electron interactions and impurities in one-dimensional rings
The persistent current and charge stiffness of a one-dimensional Luttinger
liquid on a ring threaded by a magnetic flux are calculated by Monte Carlo
simulation. By changing the random impurity potential strength and the
electron-electron interaction, we see a crossover behavior between weak and
strong impurity limits. For weak impurity potentials, interactions enhance
impurity effects, that is, interactions decrease the current and the stiffness.
On the other hand, interactions tend to screen impurities when the impurity
potential is strong. Temperature dependence of the persistent current and the
charge stiffness shows a peak at a characteristic temperature, consistent with
a recent single impurity study.Comment: 4 pages (ReVTeX3.0) + 3 figures (in uuencoded postscript format)
appended in the end of the fil
Invasive ecosystem engineer selects for different phenotypes of an associated native species
Invasive habitat-forming ecosystem engineers modify the abiotic environment and thus represent a major perturbation to many ecosystems. Because native species often persist in these invaded habitats but have no shared history with the ecosystem engineer, the engineer may impose novel selective pressure on native species. In this study, we used a phenotypic selection framework to determine whether an invasive habitat-forming ecosystem engineer (the seaweed Caulerpa taxifolia) selects for different phenotypes of a common cooccurring native species (the bivalve Anadara trapezia). Compared to unvegetated habitat, Caulerpa habitat has lower water flow, lower dissolved oxygen, and sediments are more silty and anoxic. We determined the performance consequences of variation in key functional traits that may be affected by these abiotic changes (shell morphology, gill mass, and palp mass) for Anadara transplanted into Caulerpa and unvegetated habitat. Both linear and nonlinear performance gradients in Anadara differed between habitats, and these gradients were stronger in Caulerpa compared to unvegetated sediment. Moreover, in Caulerpa alternate phenotypes performed well, and these phenotypes were different from the dominant phenotype in unvegetated sediment. By demonstrating that phenotype-performance gradients differ between habitats, we have highlighted a role for Caulerpa as an agent of selection on native species
- …
