2,915 research outputs found

    Clinical and educational impact of pharmacogenomics testing: a case series from the INGENIOUS trial

    Get PDF
    Pharmacogenomic testing has become increasingly widespread. However, there remains a need to bridge the gap between test results and providers lacking the expertise required to interpret these results. The Indiana Genomics Implementation trial is underway at our institution to examine total healthcare cost and patient outcomes after genotyping in a safety-net healthcare system. As part of the study, trial investigators and clinical pharmacology fellows interpret genotype results, review patient histories and medication lists and evaluate potential drug-drug interactions. We present a case series of patients in whom pharmacogenomic consultations aided providers in appropriately applying pharmacogenomic results within the clinical context. Formal consultations not only provide valuable patient care information but educational opportunities for the fellows to cement pharmacogenomic concepts

    Next Generation Microbiology Requirements

    Get PDF
    As humans continue to explore deep into space, microorganisms will travel with them. The primary means to mitigate the risk of infectious disease are a combination of prudent spacecraft design and rigorous operational controls. The effectiveness of these methods are evaluated by microbiological monitoring of spacecraft, food, water, and the crew that is performed preflight, in-flight, and post-flight. Current NASA requirements associated with microbiological monitoring are based on culture-based methodology where microorganisms are grown on a semi-solid growth medium and enumerated. Subsequent identification of the organisms requires specialized labor and large equipment, which historically has been performed on Earth. Requirements that rely strictly on culture-based units limit the use of non-culture based monitoring technology. Specifically, the culture-based "measurement criteria" are Colony Forming Units (CFU, representing the growth of one microorganism at a single location on the agar medium) per a given volume, area, or sample size. As the CFU unit by definition is culture-based, these requirements limit alternative technologies for spaceflight applications. As spaceflight missions such as those to Mars extend further into space, culture-based technology will become difficult to implement due to the (a) limited shelf life of the culture media, (b) mass/volume necessary to carry these consumables, and (c) problems associated with the production of biohazardous material in the habitable volume of the spacecraft. In addition, an extensive amount of new knowledge has been obtained during the Space Shuttle, NASA-Mir, and International Space Station Programs, which gave direction for new or modified microbial control requirements for vehicle design and mission operations. The goal of this task is to develop and recommend a new set of requirements for vehicle design and mission operations, including microbiological monitoring, based upon "lessons learned" and new technology. During 2011, this study focused on evaluating potable water requirements by assembling a forum of internal and external experts from NASA, other federal agencies, and academia. Key findings from this forum included: (1) Preventive design and operational strategies should be stringent and the primary focus of NASA's mitigation efforts, as they are cost effective and can be attained with conventional technology. (2) Microbial monitoring hardware should be simple and must be able to measure the viability of microorganisms in a sample. Multiple monitoring technologies can be utilized as long as at the microorganisms being identified can also be confirmed as viable. (3) Evidence showing alterations in the crew immune function and microbial virulence complicates risk assessments and creates the need for very conservative requirements. (4) One key source of infectious agents will always be the crew, and appropriate preventative measures should be taken preflight. (5) Water systems should be thoroughly disinfected (sterilized if possible) preflight and retain a residual biocide throughout the mission. Future forums will cover requirements for other types of samples, specifically spaceflight food and environmental samples, such as vehicle air and vehicle and cargo surfaces. An interim report on the potable water forum has been delivered to the Human Research Program with a final report on the recommendations for all sample types being delivered in September 2013

    The Current-Temperature Phase Diagram of Layered Superconductors

    Full text link
    The behavior of clean layered superconductors in the presence of a finite electric current and in zero-magnetic field behavior is addressed. The structure of the current temperature phase diagram and the properties of each of the four regions will be explained. We will discuss the expected current voltage and resistance characteristics of each region as well as the effects of finite size and weak disorder on the phase diagram. In addition, the reason for which a weakly non-ohmic region exists above the transition temperature will be explained.Comment: 8 pages (RevTeX), 4 encapsulated postscript figure

    Renormalization group approach to layered superconductors

    Full text link
    A renormalization group theory for a system consisting of coupled superconducting layers as a model for typical high-temperature superconducters is developed. In a first step the electromagnetic interaction over infinitely many layers is taken into account, but the Josephson coupling is neglected. In this case the corrections to two-dimensional behavior due to the presence of the other layers are very small. Next, renormalization group equations for a layered system with very strong Josephson coupling are derived, taking into account only the smallest possible Josephson vortex loops. The applicability of these two limiting cases to typical high-temperature superconductors is discussed. Finally, it is argued that the original renormalization group approach by Kosterlitz is not applicable to a layered system with intermediate Josephson coupling.Comment: RevTeX, 15 pages, 4 figures can be obtained from the author by conventional mail; accepted for publication in Phys. Rev.

    NMR and NQR Fluctuation Effects in Layered Superconductors

    Full text link
    We study the effect of thermal fluctuations of the s-wave order parameter of a quasi two dimensional superconductor on the nuclear spin relaxation rate near the transition temperature Tc. We consider both the effects of the amplitude fluctuations and the Berezinskii-Kosterlitz-Thouless (BKT) phase fluctuations in weakly coupled layered superconductors. In the treatment of the amplitude fluctuations we employ the Gaussian approximation and evaluate the longitudinal relaxation rate 1/T1 for a clean s-wave superconductor, with and without pair breaking effects, using the static pair fluctuation propagator D. The increase in 1/T1 due to pair breaking in D is overcompensated by the decrease arising from the single particle Green's functions. The result is a strong effect on 1/T1 for even a small amount of pair breaking. The phase fluctuations are described in terms of dynamical BKT excitations in the form of pancake vortex-antivortex (VA) pairs. We calculate the effect of the magnetic field fluctuations caused by the translational motion of VA excitations on 1/T1 and on the transverse relaxation rate 1/T2 on both sides of the BKT transitation temperature T(BKT)<Tc. The results for the NQR relaxation rates depend strongly on the diffusion constant that governs the motion of free and bound vortices as well as the annihilation of VA pairs. We discuss the relaxation rates for real multilayer systems where the diffusion constant can be small and thus increase the lifetime of a VA pair, leading to an enhancement of the rates. We also discuss in some detail the experimental feasibility of observing the effects of amplitude fluctuations in layered s-wave superconductors such as the dichalcogenides and the effects of phase fluctuations in s- or d-wave superconductors such as the layered cuprates.Comment: 38 pages, 12 figure

    Microbiological Lessons Learned from the Space Shuttle

    Get PDF
    After 30 years of being the centerpiece of NASA s human spacecraft, the Space Shuttle will retire. This highly successful program provided many valuable lessons for the International Space Station (ISS) and future spacecraft. Major microbiological risks to crewmembers include food, water, air, surfaces, payloads, animals, other crewmembers, and ground support personnel. Adverse effects of microorganisms are varied and can jeopardize crew health and safety, spacecraft systems, and mission objectives. Engineering practices and operational procedures can minimize the negative effects of microorganisms. To minimize problems associated with microorganisms, appropriate steps must begin in the design phase of new spacecraft or space habitats. Spacecraft design must include requirements to control accumulation of water including humidity, leaks, and condensate on surfaces. Materials used in habitable volumes must not contribute to microbial growth. Use of appropriate materials and the implementation of robust housekeeping that utilizes periodic cleaning and disinfection will prevent high levels of microbial growth on surfaces. Air filtration can ensure low levels of bioaerosols and particulates in the breathing air. The use of physical and chemical steps to disinfect drinking water coupled with filtration can provide safe drinking water. Thorough preflight examination of flight crews, consumables, and the environment can greatly reduce pathogens in spacecraft. The advances in knowledge of living and working onboard the Space Shuttle formed the foundation for environmental microbiology requirements and operations for the International Space Station (ISS) and future spacecraft. Research conducted during the Space Shuttle Program resulted in an improved understanding of the effects of spaceflight on human physiology, microbial properties, and specifically the host-microbe interactions. Host-microbe interactions are substantially affected by spaceflight. Astronaut immune functions were found to be altered. Selected microorganisms were found to become more virulent during spaceflight. The increased knowledge gained on the Space Shuttle resulted in further studies of the host-microbe interactions on the ISS to determine if countermeasures were necessary. Lessons learned from the Space Shuttle Program were integrated into the ISS resulting in the safest space habitat to date

    Dynamic scaling for 2D superconductors, Josephson junction arrays and superfluids

    Full text link
    The value of the dynamic critical exponent zz is studied for two-dimensional superconducting, superfluid, and Josephson Junction array systems in zero magnetic field via the Fisher-Fisher-Huse dynamic scaling. We find z5.6±0.3z\simeq5.6\pm0.3, a relatively large value indicative of non-diffusive dynamics. Universality of the scaling function is tested and confirmed for the thinnest samples. We discuss the validity of the dynamic scaling analysis as well as the previous studies of the Kosterlitz-Thouless-Berezinskii transition in these systems, the results of which seem to be consistent with simple diffusion (z=2z=2). Further studies are discussed and encouraged.Comment: 19 pages in two-column RevTex, 8 embedded EPS figure

    Precision calculation of magnetization and specific heat of vortex liquids and solids in type II superconductors

    Full text link
    A new systematic calculation of magnetization and specific heat contributions of vortex liquids and solids (not very close to the melting line) is presented. We develop an optimized perturbation theory for the Ginzburg - Landau description of thermal fluctuations effects in the vortex liquids. The expansion is convergent in contrast to the conventional high temperature expansion which is asymptotic. In the solid phase we calculate first two orders which are already quite accurate. The results are in good agreement with existing Monte Carlo simulations and experiments. Limitations of various nonperturbative and phenomenological approaches are noted. In particular we show that there is no exact intersection point of the magnetization curves both in 2D and 3D.Comment: 4 pages, 3 figure

    New Institutionalism Through a Gender Lens:Towards a Feminist Institutionalism?

    Get PDF
    New institutionalism (NI) may no longer qualify as being ‘new’, but since re-emphasizing institutions as a central explanatory variable in political analysis over two decades ago, it continues to provide scholars with a useful perspective through which to analyse political dynamics and outcomes that shape everyday life. The renewed focus on institutions has rebalanced the structure/agency scales back toward the former without losing important insights about the role and impact of political actors. NI has allowed for greater understanding about the co-constitutive nature of politics: the various ways in which actors bring about or resist change in institutions; and the way institutions shape the nature of actors’ behaviour through the construction of rules, norms and policies. <br/

    Zika virus: New clinical syndromes and its emergence in the western hemisphere

    Get PDF
    Zika virus (ZIKV) had remained a relatively obscure flavivirus until a recent series of outbreaks accompanied by unexpectedly severe clinical complications brought this virus into the spotlight as causing an infection of global public health concern. In this review, we discuss the history and epidemiology of ZIKV infection, recent outbreaks in Oceania and the emergence of ZIKV in the Western Hemisphere, newly ascribed complications of ZIKV infection, including Guillain-Barré syndrome and microcephaly, potential interactions between ZIKV and dengue virus, and the prospects for the development of antiviral agents and vaccines
    corecore