31,778 research outputs found

    Direct N-body Simulations of Rubble Pile Collisions

    Full text link
    There is increasing evidence that many km-sized bodies in the Solar System are piles of rubble bound together by gravity. We present results from a project to map the parameter space of collisions between km-sized spherical rubble piles. The results will assist in parameterization of collision outcomes for Solar System formation models and give insight into fragmentation scaling laws. We use a direct numerical method to evolve the positions and velocities of the rubble pile particles under the constraints of gravity and physical collisions. We test the dependence of the collision outcomes on impact parameter and speed, impactor spin, mass ratio, and coefficient of restitution. Speeds are kept low (< 10 m/s, appropriate for dynamically cool systems such as the primordial disk during early planet formation) so that the maximum strain on the component material does not exceed the crushing strength. We compare our results with analytic estimates and hydrocode simulations. Off-axis collisions can result in fast-spinning elongated remnants or contact binaries while fast collisions result in smaller fragments overall. Clumping of debris escaping from the remnant can occur, leading to the formation of smaller rubble piles. In the cases we tested, less than 2% of the system mass ends up orbiting the remnant. Initial spin can reduce or enhance collision outcomes, depending on the relative orientation of the spin and orbital angular momenta. We derive a relationship between impact speed and angle for critical dispersal of mass in the system. We find that our rubble piles are relatively easy to disperse, even at low impact speed, suggesting that greater dissipation is required if rubble piles are the true progenitors of protoplanets.Comment: 30 pages including 4 tables, 8 figures. Revised version to be published in Icarus

    The lower hybrid wave cutoff: A case study in eikonal methods

    Full text link
    Eikonal, or ray tracing, methods are commonly used to estimate the propagation of radio frequency fields in plasmas. While the information gained from the rays is quite useful, an approximate solution for the fields would also be valuable, e.g., for comparison to full wave simulations. Such approximations are often difficult to perform numerically because of the special care which must be taken to correctly reconstruct the fields near reflection and focusing caustics. In this paper, we compare the standard eikonal method for approximating fields to a method based on the dynamics of wave packets. We compare the approximations resulting from these two methods to the analytical solution for a lower hybrid wave reflecting from a cutoff. The algorithm based on wave packets has the advantage that it can correctly deal with caustics, without any special treatment.Comment: 12 pages, 17 figures, To appear in Physics of Plasmas, Received 14 December 2009; accepted 29 March 2010

    Interpreting the Ionization Sequence in AGN Emission-Line Spectra

    Get PDF
    We investigate the physical cause of the great range in the ionization level seen in the spectra of narrow lined active galactic nuclei (AGN). Mean field independent component analysis identifies examples of individual SDSS galaxies whose spectra are not dominated by emission due to star formation (SF), which we designate as AGN. We assembled high S/N ratio composite spectra of a sequence of these AGN defined by the ionization level of their narrow-line regions (NLR), extending down to very low-ionization cases. We used a local optimally emitting cloud (LOC) model to fit emission-line ratios in this AGN sequence. These included the weak lines that can be measured only in the co-added spectra, providing consistency checks on strong line diagnostics. After integrating over a wide range of radii and densities our models indicate that the radial extent of the NLR is the major parameter in determining the position of high to moderate ionization AGN along our sequence, providing a physical interpretation for their systematic variation. Higher ionization AGN contain optimally emitting clouds that are more concentrated towards the central continuum source than in lower ionization AGN. Our LOC models indicate that for the objects that lie on our AGN sequence, the ionizing luminosity is anticorrelated with the NLR ionization level, and hence anticorrelated with the radial concentration and physical extent of the NLR. A possible interpretation that deserves further exploration is that the ionization sequence might be an age sequence where low ionization objects are older and have systematically cleared out their central regions by radiation pressure. We consider that our AGN sequence instead represents a mixing curve of SF and AGN spectra, but argue that while many galaxies do have this type of composite spectra, our AGN sequence appears to be a special set of objects with negligible SF excitation.Comment: 57 pages; 18 figures, accepted by MNRA

    Classification and analysis of emission-line galaxies using mean field independent component analysis

    Get PDF
    We present an analysis of the optical spectra of narrow emission-line galaxies, based on mean field independent component analysis (MFICA). Samples of galaxies were drawn from the Sloan Digital Sky Survey (SDSS) and used to generate compact sets of `continuum' and `emission-line' component spectra. These components can be linearly combined to reconstruct the observed spectra of a wider sample of galaxies. Only 10 components - five continuum and five emission line - are required to produce accurate reconstructions of essentially all narrow emission-line galaxies; the median absolute deviations of the reconstructed emission-line fluxes, given the signal-to-noise ratio (S/N) of the observed spectra, are 1.2-1.8 sigma for the strong lines. After applying the MFICA components to a large sample of SDSS galaxies we identify the regions of parameter space that correspond to pure star formation and pure active galactic nucleus (AGN) emission-line spectra, and produce high S/N reconstructions of these spectra. The physical properties of the pure star formation and pure AGN spectra are investigated by means of a series of photoionization models, exploiting the faint emission lines that can be measured in the reconstructions. We are able to recreate the emission line strengths of the most extreme AGN case by assuming the central engine illuminates a large number of individual clouds with radial distance and density distributions, f(r) ~ r^gamma and g(n) ~ n^beta, respectively. The best fit is obtained with gamma = -0.75 and beta = -1.4. From the reconstructed star formation spectra we are able to estimate the starburst ages. These preliminary investigations serve to demonstrate the success of the MFICA-based technique in identifying distinct emission sources, and its potential as a tool for the detailed analysis of the physical properties of galaxies in large-scale surveys.Comment: MNRAS accepted. 29 pages, 24 figures, 3 table

    Leech Parasitism of the Gulf Coast Box Turtle, Terrapene carolina major (Testudines:Emydidae) in Mississippi, USA

    Get PDF
    Ten leeches were collected from a Gulf Coast box turtle, Terrapene carolina major, found crossing a road in Gulfport, Harrison County, Mississippi, USA. Eight of the leeches were identified as Placobdella multilineata and 2 were identified as Helobdella europaea. This represents the second vouchered report of leeches from a box turtle. Helobdella europaea is reported for the first time associated with a turtle and for the second time from the New World

    The Nature of the H2-Emitting Gas in the Crab Nebula

    Get PDF
    Understanding how molecules and dust might have formed within a rapidly expanding young supernova remnant is important because of the obvious application to vigorous supernova activity at very high redshift. In previous papers, we found that the H2 emission is often quite strong, correlates with optical low-ionization emission lines, and has a surprisingly high excitation temperature. Here we study Knot 51, a representative, bright example, for which we have available long slit optical and NIR spectra covering emission lines from ionized, neutral, and molecular gas, as well as HST visible and SOAR Telescope NIR narrow-band images. We present a series of CLOUDY simulations to probe the excitation mechanisms, formation processes and dust content in environments that can produce the observed H2 emission. We do not try for an exact match between model and observations given Knot 51's ambiguous geometry. Rather, we aim to explain how the bright H2 emission lines can be formed from within the volume of Knot 51 that also produces the observed optical emission from ionized and neutral gas. Our models that are powered only by the Crab's synchrotron radiation are ruled out because they cannot reproduce the strong, thermal H2 emission. The simulations that come closest to fitting the observations have the core of Knot 51 almost entirely atomic with the H2 emission coming from just a trace molecular component, and in which there is extra heating. In this unusual environment, H2 forms primarily by associative detachment rather than grain catalysis. In this picture, the 55 H2-emitting cores that we have previously catalogued in the Crab have a total mass of about 0.1 M_sun, which is about 5% of the total mass of the system of filaments. We also explore the effect of varying the dust abundance. We discuss possible future observations that could further elucidate the nature of these H2 knots.Comment: 51 pages, 15 figures, accepted for publication in MNRAS, revised Figure 12 results unchange

    Interpreting the Ionization Sequence in Star-Forming Galaxy Emission-Line Spectra

    Get PDF
    High ionization star forming (SF) galaxies are easily identified with strong emission line techniques such as the BPT diagram, and form an obvious ionization sequence on such diagrams. We use a locally optimally emitting cloud model to fit emission line ratios that constrain the excitation mechanism, spectral energy distribution, abundances and physical conditions along the star-formation ionization sequence. Our analysis takes advantage of the identification of a sample of pure star-forming galaxies, to define the ionization sequence, via mean field independent component analysis. Previous work has suggested that the major parameter controlling the ionization level in SF galaxies is the metallicity. Here we show that the observed SF- sequence could alternatively be interpreted primarily as a sequence in the distribution of the ionizing flux incident on gas spread throughout a galaxy. Metallicity variations remain necessary to model the SF-sequence, however, our best models indicate that galaxies with the highest and lowest observed ionization levels (outside the range -0.37 < log [O III]/H\b{eta} < -0.09) require the variation of an additional physical parameter other than metallicity, which we determine to be the distribution of ionizing flux in the galaxy.Comment: 41 pages, 17 figures, 9 tables, accepted to MNRA

    Belief propagation algorithm for computing correlation functions in finite-temperature quantum many-body systems on loopy graphs

    Get PDF
    Belief propagation -- a powerful heuristic method to solve inference problems involving a large number of random variables -- was recently generalized to quantum theory. Like its classical counterpart, this algorithm is exact on trees when the appropriate independence conditions are met and is expected to provide reliable approximations when operated on loopy graphs. In this paper, we benchmark the performances of loopy quantum belief propagation (QBP) in the context of finite-tempereture quantum many-body physics. Our results indicate that QBP provides reliable estimates of the high-temperature correlation function when the typical loop size in the graph is large. As such, it is suitable e.g. for the study of quantum spin glasses on Bethe lattices and the decoding of sparse quantum error correction codes.Comment: 5 pages, 4 figure

    Exploring the movement dynamics of deception

    Get PDF
    Both the science and the everyday practice of detecting a lie rest on the same assumption: hidden cognitive states that the liar would like to remain hidden nevertheless influence observable behavior. This assumption has good evidence. The insights of professional interrogators, anecdotal evidence, and body language textbooks have all built up a sizeable catalog of non-verbal cues that have been claimed to distinguish deceptive and truthful behavior. Typically, these cues are discrete, individual behaviors—a hand touching a mouth, the rise of a brow—that distinguish lies from truths solely in terms of their frequency or duration. Research to date has failed to establish any of these non-verbal cues as a reliable marker of deception. Here we argue that perhaps this is because simple tallies of behavior can miss out on the rich but subtle organization of behavior as it unfolds over time. Research in cognitive science from a dynamical systems perspective has shown that behavior is structured across multiple timescales, with more or less regularity and structure. Using tools that are sensitive to these dynamics, we analyzed body motion data from an experiment that put participants in a realistic situation of choosing, or not, to lie to an experimenter. Our analyses indicate that when being deceptive, continuous fluctuations of movement in the upper face, and somewhat in the arms, are characterized by dynamical properties of less stability, but greater complexity. For the upper face, these distinctions are present despite no apparent differences in the overall amount of movement between deception and truth. We suggest that these unique dynamical signatures of motion are indicative of both the cognitive demands inherent to deception and the need to respond adaptively in a social context
    corecore