475 research outputs found
Phase diagram and optical conductivity of La1.8-xEu0.2SrxCuO4
La1.8-xEu0.2SrxCuO4 (LESCO) is the member of the 214 family which exhibits
the largest intervals among the structural, charge ordering (CO), magnetic, and
superconducting transition temperatures. By using new dc transport measurements
and data in the literature we construct the phase diagram of LESCO between x =
0.8 and 0.20. This phase diagram has been further probed in ac, by measuring
the optical conductivity {\sigma}1({\omega}) of three single crystals with x =
0.11, 0.125, and 0.16 between 10 and 300 K in order to associate the
extra-Drude peaks often observed in the 214 family with a given phase. The
far-infrared peak we detect in underdoped LESCO is the hardest among them,
survives up to room temperature and is associated with charge localization
rather than with ordering. At the CO transition for the commensurate doping x =
0.125 instead the extra-Drude peak hardens and a pseudogap opens in
{\sigma}1({\omega}), approximately as wide as the maximum superconducting gap
of LSCO.Comment: 6 pages, 6 figure
The Demise of the Classical BLR in the Luminous Quasar PG1416-129
New observations of the broad-line quasar PG1416-129 reveal a large decline
in its continuum luminosity over the past ten years. In response to the
continuum change the ``classical'' broad component of Hbeta has almost
completely disappeared (a x10 decrease in flux). In its place there remains a
redshifted/redward asymmetric very broad emission line component. The
significance of this change is multifold: (1) It confirms the existence of a
distinct redshifted Very Broad Line Region (VBLR) component that persists after
the demise of the broad component and that is frequently observed, along with
the broad component, in radio-loud sources. (2) The smaller (x2) intensity
change in the Hbeta very broad component supports the previously advanced idea
that the VBLR is physically distinct and likely to arise in an optically thin
region close to the central source. (3) The presence of a strong very broad
component in the radio-quiet quasar PG1416-129 reinforces the notion that such
``population B'' quasars share similar spectroscopic (and hence geometrical and
kinematical) properties to radio-loud sources. (4) AGN can show broad, very
broad, or both line components simultaneously, making statistical comparisons
of source profile widths difficult. (5) The interpretation, in reverberation
studies, of the presence or lack of correlated response in broad line wings
will be affected by this composite BLR/VBLR structure.Comment: accepted to Astrophys. J. Letters; 12 pages, 2 figures, 2 table
Optical phase coherent timing of the Crab nebula pulsar with Iqueye at the ESO New Technology Telescope
The Crab nebula pulsar was observed in 2009 January and December with a novel
very fast optical photon counter, Iqueye, mounted at the ESO 3.5 m New
Technology Telescope. Thanks to the exquisite quality of the Iqueye data, we
computed accurate phase coherent timing solutions for the two observing runs
and over the entire year 2009. Our statistical uncertainty on the determination
of the phase of the main pulse and the rotational period of the pulsar for
short (a few days) time intervals are s and ~0.5 ps,
respectively. Comparison with the Jodrell Bank radio ephemerides shows that the
optical pulse leads the radio one by ~240 s in January and ~160 s in
December, in agreement with a number of other measurements performed after
1996. A third-order polynomial fit adequately describes the spin-down for the
2009 January plus December optical observations. The phase noise is consistent
with being Gaussian distributed with a dispersion of s in most observations, in agreement with theoretical expectations for
photon noise-induced phase variability.Comment: 10 pages, 5 figures. Accepted for publication in Monthly Notices of
the Royal Astronomical Societ
Low-energy electrodynamics of superconducting diamond
Heavily-boron-doped diamond films become superconducting with critical
temperatures well above 4 K. Here we first measure the reflectivity of
such a film down to 5 cm, by also using Coherent Synchrotron Radiation.
We thus determine the optical gap, the field penetration depth, the range of
action of the Ferrell-Glover-Tinkham sum rule, and the electron-phonon spectral
function. We conclude that diamond behaves as a dirty BCS superconductor.Comment: 4 pages including 3 figure
Infrared absorption from Charge Density Waves in magnetic manganites
The infrared absorption of charge density waves coupled to a magnetic
background is first observed in two manganites La{1-x}Ca{x}MnO{3} with x = 0.5
and x = 0.67. In both cases a BCS-like gap 2 Delta (T), which for x=0.5 follows
the hysteretic ferro-antiferromagnetic transition, fully opens at a finite T{0}
< T{Neel}, with 2 Delta(T{0})/kT{c} close to 5. These results may also explain
the unusual coexistence of charge ordering and ferromagnetism in
La{0.5}Ca{0.5}MnO{3}.Comment: File revtex + 3 figs. in epsf. To appear on Phys. Rev. Let
Small and large polarons in nickelates, manganites, and cuprates
By comparing the optical conductivities of La_{1.67}Sr_{0.33}NiO_{4} (LSNO),
Sr_{1.5}La_{0.5}MnO_4 (SLMO), Nd_2CuO_{4-y} (NCO), and
Nd_{1.96}Ce_{0.04}CuO_{4} (NCCO), we have identified a peculiar behavior of
polarons in this cuprate family. While in LSNO and SLMO small polarons localize
into ordered structures below a transition temperature, in those cuprates the
polarons appear to be large, and at low T their binding energy decreases. This
reflects into an increase of the polaron radius, which may trigger coherent
transport.Comment: File latex, 15 p. incl. 4 Figs. epsf, to appear on the Journal of
Superconductivity - Proc. "Stripes 1996" - Roma Dec 199
The Charge Ordered State from Weak to Strong Coupling
We apply the Dynamical Mean Field Theory to the problem of charge ordering.
In the normal state as well as in the Charge Ordered (CO) state the existence
of polarons, i.e. electrons strongly coupled to local lattice deformation, is
associated to the qualitative properties of the Lattice Polarization
Distribution Function (LPDF). At intermediate and strong coupling a CO state
characterized by a certain amount of thermally activated defects arise from the
spatial ordering of preexisting randomly distributed polarons. Properties of
this particular CO state gives a qualitative understanding of the low frequency
behavior of optical conductivity of perovskites.Comment: 4 pages, 3 figures, to be published in J. of Superconductivity
(proceedings Stripes 98
Polaronic optical absorption in electron-doped and hole-doped cuprates
Polaronic features similar to those previously observed in the photoinduced
spectra of cuprates have been detected in the reflectivity spectra of
chemically doped parent compounds of high-critical-temperature superconductors,
both -type and -type. In NdCuO these features, whose
intensities depend both on doping and temperature, include local vibrational
modes in the far infrared and a broad band centered at 1000 cm.
The latter band is produced by the overtones of two (or three) local modes and
is well described in terms of a small-polaron model, with a binding energy of
about 500 cm. Most of the above infrared features are shown to survive
in the metallic phase of NdCeCu0, BiSrCuO, and
YBaCuO, where they appear as extra-Drude peaks. The occurrence
of polarons is attributed to local modes strongly coupled to carriers, as shown
by a comparison with tunneling results.Comment: File latex, 31 p., submitted to Physical Review B. Figures may be
faxed upon reques
Optical conductivity of the nonsuperconducting cuprate La(8-x)Sr(x)Cu(8)O(20)
La(8-x)Sr(x)Cu(8)O(20) is a non-superconducting cuprate, which exhibits a
doubling of the elementary cell along the c axis. Its optical conductivity
sigma (omega) has been first measured here, down to 20 K, in two single
crystals with x = 1.56 and x = 2.24. Along c, sigma (omega) shows, in both
samples, bands due to strongly bound charges, thus confirming that the cell
doubling is due to charge ordering. In the ab plane, in addition to the Drude
term one observes an infrared peak at 0.1 eV and a midinfrared band at 0.7 eV.
The 0.1 eV peak hardens considerably below 200 K, in correspondence of an
anomalous increase in the sample dc resistivity, in agreement with its
polaronic origin. This study allows one to establish relevant similarities and
differences with respect to the spectrum of the ab plane of the superconducting
cuprates.Comment: Revised version submitted to Phys. Rev. B, including the elimination
of Fig. 1 and changes to Figs. 4 and
- …
