25 research outputs found
Assessing the economic suitability of aeration and the influence of bed heating on constructed wetlands treatment efficiency and life-span
Intensive constructed wetlands including forced aeration and heating were studied to improve treatment efficiency and prevent clogging. The experiments were carried out in a pilot plant (0.4 m2) treating urban wastewater with an organic loading rate of 40-60 gCOD/m2∙d. Continuous and intermittent aeration was performed on 8% of the wetland surface, leading to different dissolved oxygen concentrations within the wetlands (from 0.2 to 5 mgO2/L). Continuous forced aeration increased organic matter (COD) and ammonium nitrogen removal by 56% and 69%, respectively. Improvements in 33 wastewater treatment caused by forced aeration can result into reduction of the surface area. This work demonstrated that for the studied configuration the cost of the power consumption of the continuous aeration was largely covered by the reduction of the wetlands surface. Even if the heating of 8% of the wetland surface at 21°C had no effects on treatment performances, positive results showed that solids accumulation rate within the granular medium, which is closely related to the development of clogging. It has been demonstrated that heating for 10 days per year during 20 year period would delay the equivalent of 1 year of solids accumulation
The integrated action framework of Rete Natura 2000 Basilicata
Basilicata Natura 2000 network consists of 50 Sites of Community Importance (SCI) and 17 Special Protection Zones (SPZs), covering alltogether more than 17% of the regional area. This network, partially overlapping other forms of land protection, represents a valuable environmental, agricultural and cultural heritage, in which the safeguard of natural resources and landscapes has to be coupled with the needs of the local population; especially in relation to development and social welfare.
The Natura 2000 project involved a panel of experts belonging to 15 different institutions, to form a steering committee with the following professional and scientific skills: vegetation, landscape, fauna, geology, agriculture, forestry, sea, architecture and planning, territorial analysis and representation. Along the 4 years project, the steering committee designed and coordinated the activities of over 150 professionals, mostly from Basilicata, who carried out field surveys and data analysis aimed at assessing the environmental conditions in the SCI and SPZs, proposing measures and plans, implementing thematic databases.
SCI/SPZ management plans, by themselves, may not be sufficient to fulfill the requirements of an effective environmental policy, which has to go along with the awareness of people, citizens and local administrators about the instances of a sustainable policy. For this reason, the activities of surveying and management have been coupled with a communication project that involves all the experts and a relevant part of professionals who participated to the Natura 2000 project. The communication activity implies the use and the creation of several tools (publishing, video, websites, meetings, photo contests, social networks ...) targeted to different groups: policy makers (local, regional, national, European ), organizations, citizens, schools, farmers, small and medium enterprises (www.natura2000basilicata.it).
A further goal is to feature the environmental highlights of Basilicata which are linked to a specific and often surprising integration of an ancient human presence with the natural elements, and the role performed by the traditional farming activities in the maintenance of ecosystem dynamics and services (in particular with agriculture). In fact, a good number of Natura 2000 sites can be considered High Nature Value Farmlands (HNVF, sensu E. Andersen, 2003), in which a virtuous relationship was established a long time ago between traditional practices and the environment itself. In this context, it combines the convergence between the activities carried on the Natura 2000 network and the project Agrival (http://utagri.enea.it/projects/agrival), a research project led by ENEA in Val d'Agri, in order to experimentally contribute to the methodology for the identification of the High Nature Value Farmlands and make them cohabit with the other economic activities in the local context.
The process started with the project Basilicata Natura 2000 Network is therefore an interesting methodological model that, in coherence with the financial planning of the European Community for the period 2014-2020 (Brussels, 12.12.2011, COMM. 874) puts together projects on environmental issues to boost the meeting of agricultural, environmental, cultural and productive policies, fostered by the EC, and enhancing the implementation of the "Prioritized Actions Frameworks" (PAF), pointed out by the European Commission as the optimal tools for the management of Natura 2000 networks
Landslide susceptibility mapping at VAZ watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms
Landslide susceptibility and hazard assessments are the most important steps in landslide risk mapping. The main objective of this study was to investigate and compare the results of two artificial neural network (ANN) algorithms, i.e., multilayer perceptron (MLP) and radial basic function (RBF) for spatial prediction of landslide susceptibility in Vaz Watershed, Iran. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 136 landside locations were constructed from various sources. Then the landslide inventory map was randomly split into a training dataset 70 % (95 landslide locations) for training the ANN model and the remaining 30 % (41 landslides locations) was used for validation purpose. Nine landslide conditioning factors such as slope, slope aspect, altitude, land use, lithology, distance from rivers, distance from roads, distance from faults, and rainfall were constructed in geographical information system. In this study, both MLP and RBF algorithms were used in artificial neural network model. The results showed that MLP with Broyden–Fletcher–Goldfarb–Shanno learning algorithm is more efficient than RBF in landslide susceptibility mapping for the study area. Finally the landslide susceptibility maps were validated using the validation data (i.e., 30 % landslide location data that was not used during the model construction) using area under the curve (AUC) method. The success rate curve showed that the area under the curve for RBF and MLP was 0.9085 (90.85 %) and 0.9193 (91.93 %) accuracy, respectively. Similarly, the validation result showed that the area under the curve for MLP and RBF models were 0.881 (88.1 %) and 0.8724 (87.24 %), respectively. The results of this study showed that landslide susceptibility mapping in the Vaz Watershed of Iran using the ANN approach is viable and can be used for land use planning
Assessing the fluvial system resilience of the river Bacchiglione to point sources of pollution in Northeast Italy: a novel Water Resilience Index (WRI) approach
Modelling and evaluating the resilience of environmental systems has recently raised significant interest among both practitioners and researchers. However, it has not yet been used to measure the absorption and recovery capacities of a river subject to varying levels of pollution due to natural and anthropic sources of contamination within the basin. Fast worldwide population growth and climate change are contributing to an increased degradation status in surface water bodies and to a decreased efficiency of their natural self-purification processes. Decision-makers are, therefore, more and more encouraged to implement alternative management strategies focussed on improving the system resilience to current and future perturbations. To this end, a novel Water Resilience Index (WRI), based on different quality parameters, was developed, and it is here proposed to estimate the ability of the river Bacchiglione, located in Northeast Italy, absorb continuous and unpredictable changes due to potential effects of point sources of pollution, that is, urban and industrial wastewater, and still maintain its vital functions. This new index is integrated in a mathematical model, which represents the river as an influence diagram where the nodes are the gauged stations and the arcs are the fluvial reaches among the stations, to identify the river reaches in need of resilience improvement. In addition, in order to simplify the analytical procedure and lower the costs and times of the monitoring activities, a principal component analysis is also used, as it is able to reduce the number of the water quality parameters to be collected from the sampling stations, distributed along the main river, and thus to calculate a minimum WRI. The good agreement between the results obtained by both the original and minimum WRI shows the effectiveness of the proposed methodology. This approach could be applied to all basins with the same issues, and not just in the Italian case study here analysed, as it might be a valid tool to plan interventions and mitigation actions, protecting the resource from pollution risks and achieving environmental quality and Sustainable Development Goals both in the water bodies and their surrounding territories. In addition, this strategy could be integrated in the existing models supporting local decision-makers and administrators, aiming at increasing the resilience of urban and rural areas to pollution phenomena and facilitating the development of effective policies to reduce the impacts of global change on water quality
TOWARDS NEW MANAGEMENT TOOLS FOR THE MONITORING AND MANAGEMENT OF LANDFILL GAS IN SMALL SITES
In this study, a monitoring campaign on the biofilter used to treat the biogas produced
by the landfill located in Venosa (Basilicata, Southern Italy) was carried out to measure CH4 and
CO2 concentrations in the gas entering in the biofilter, as well as in the treated air, at different
operational conditions (i.e. biogas flow rate and moisture content). Mass balances between the
influent and off-gas flow rates allowed us to estimate the CH4 removal efficiency of the biofilter.
Moreover, biological analyses on the filter medium were performed to evaluate the influence of
ammonia nitrogen and temperature on the methanotrophic growth. The findings show that the CH4
removal efficiency improves when the biogas flow rate decreases, because the lower flow rates
minimize possible air contaminations from pipe losses. Regarding the factors influencing
microorganisms growth, high incubation temperature cause an inhibition of biological processes,
whereas the possible inhibition effect of ammonia depends on the dilution conditions in which the
soil sample are prepared
GIS-Based Landslide Susceptibility Mapping Using a Certainty Factor Model and Its Validation in the Chuetsu Area, Central Japan
Methane oxidation in a biofilter (Part 1): Development of a mathematical model for designing and optimization
The integrated action framework of Rete Natura 2000 Basilicata
Basilicata Natura 2000 network consists of 50 Sites of Community Importance (SCI) and 17 Special Protection Zones (SPZs), covering alltogether more than 17% of the regional area. This network, partially overlapping other forms of land protection, represents a valuable environmental, agricultural and cultural heritage, in which the safeguard of natural resources and landscapes has to be coupled with the needs of the local population; especially in relation to development and social welfare.
The Natura 2000 project involved a panel of experts belonging to 15 different institutions, to form a steering committee with the following professional and scientific skills: vegetation, landscape, fauna, geology, agriculture, forestry, sea, architecture and planning, territorial analysis and representation. Along the 4 years project, the steering committee designed and coordinated the activities of over 150 professionals, mostly from Basilicata, who carried out field surveys and data analysis aimed at assessing the environmental conditions in the SCI and SPZs, proposing measures and plans, implementing thematic databases.
SCI/SPZ management plans, by themselves, may not be sufficient to fulfill the requirements of an effective environmental policy, which has to go along with the awareness of people, citizens and local administrators about the instances of a sustainable policy. For this reason, the activities of surveying and management have been coupled with a communication project that involves all the experts and a relevant part of professionals who participated to the Natura 2000 project. The communication activity implies the use and the creation of several tools (publishing, video, websites, meetings, photo contests, social networks ...) targeted to different groups: policy makers (local, regional, national, European ), organizations, citizens, schools, farmers, small and medium enterprises (www.natura2000basilicata.it).
A further goal is to feature the environmental highlights of Basilicata which are linked to a specific and often surprising integration of an ancient human presence with the natural elements, and the role performed by the traditional farming activities in the maintenance of ecosystem dynamics and services (in particular with agriculture). In fact, a good number of Natura 2000 sites can be considered High Nature Value Farmlands (HNVF, sensu E. Andersen, 2003), in which a virtuous relationship was established a long time ago between traditional practices and the environment itself. In this context, it combines the convergence between the activities carried on the Natura 2000 network and the project Agrival (http://utagri.enea.it/projects/agrival), a research project led by ENEA in Val d'Agri, in order to experimentally contribute to the methodology for the identification of the High Nature Value Farmlands and make them cohabit with the other economic activities in the local context.
The process started with the project Basilicata Natura 2000 Network is therefore an interesting methodological model that, in coherence with the financial planning of the European Community for the period 2014-2020 (Brussels, 12.12.2011, COMM. 874) puts together projects on environmental issues to boost the meeting of agricultural, environmental, cultural and productive policies, fostered by the EC, and enhancing the implementation of the "Prioritized Actions Frameworks" (PAF), pointed out by the European Commission as the optimal tools for the management of Natura 2000 networks
