126 research outputs found
Flavor-oscillation clocks, continuous quantum measurements and a violation of Einstein equivalence principle
The relation between Einstein equivalence principle and a continuous quantum
measurement is analyzed in the context of the recently proposed
flavor-oscillation clocks, an idea pioneered by Ahluwalia and Burgard (Gen. Rel
Grav. Errata 29, 681 (1997)). We will calculate the measurement outputs if a
flavor-oscillation clock, which is immersed in a gravitational field, is
subject to a continuous quantum measurement. Afterwards, resorting to the weak
equivalence principle, we obtain the corresponding quantities in a freely
falling reference frame. Finally, comparing this last result with the
measurement outputs that would appear in a Minkowskian spacetime it will be
found that they do not coincide, in other words, we have a violation of
Einstein equivalence principle. This violation appears in two different forms,
namely: (i) the oscillation frequency in a freely falling reference frame does
not match with the case predicted by general relativity, a feature previously
obtained by Ahluwalia; (ii) the probability distribution of the measurement
outputs, obtained by an observer in a freely falling reference frame, does not
coincide with the results that would appear in the case of a Minkowskian
spacetime.Comment: 16 pages, accepted in Mod. Phys. Letts.
Mass dependence of the gravitationally-induced wave-function phase
The leading mass dependence of the wave function phase is calculated in the
presence of gravitational interactions. The conditions under which this phase
contains terms depending on both the square of the mass and the gravitational
constant are determined. The observability of such terms is briefly discussed.Comment: 5 pages, no figures, requires Revtex. The discussion has been
extended and clarifie
Analysis of atmospheric neutrino oscillations in three-flavor neutrinos
We analyze the atmospheric neutrino experiments of Super-Kamiokande (830-920
live days) using the three-flavor neutrino framework with the mass hierarchy
m_1 nearly equal m_2 << m_3. We study the sub-GeV, multi- GeV neutrinos and
upward through-going and stopping muons zenith angle distributions taking
account of the Earth matter effects thoroughly. We obtain the allowed regions
of mass and mixing parameters Delm^2_{23}, theta_{13} and theta_{23}.
Delm^2_{23} is restricted to 0.002-0.01eV^2 and theta_{13}<13degrees,
35degrees<theta_{23}<55degrees in 90% C.L. For theta_{12}, there is no
difference between the large angle solar neutrino solution and small one. From
chi^2 fit, the minimum chi^2=55(54DOF) is obtained at
Delm^2_{23}=4x10^(-3)eV^2, theta_{13}=10degrees and theta_{23} =45degrees.Comment: 16 pages, 3 figures, LaTe
Conservative 3+1 General Relativistic Variable Eddington Tensor Radiation Transport Equations
We present conservative 3+1 general relativistic variable Eddington tensor
radiation transport equations, including greater elaboration of the momentum
space divergence (that is, the energy derivative term) than in previous work.
These equations are intended for use in simulations involving numerical
relativity, particularly in the absence of spherical symmetry. The independent
variables are the lab frame coordinate basis spacetime position coordinates and
the particle energy measured in the comoving frame. With an eye towards
astrophysical applications---such as core-collapse supernovae and compact
object mergers---in which the fluid includes nuclei and/or nuclear matter at
finite temperature, and in which the transported particles are neutrinos, we
pay special attention to the consistency of four-momentum and lepton number
exchange between neutrinos and the fluid, showing the term-by-term
cancellations that must occur for this consistency to be achieved.Comment: Version accepted by Phys. Rev.
A Finite Difference Representation of Neutrino Radiation Hydrodynamics in Spherically Symmetric General Relativistic Space-Time
We present an implicit finite difference representation for general
relativistic radiation hydrodynamics in spherical symmetry. Our code,
Agile-Boltztran, solves the Boltzmann transport equation for the angular and
spectral neutrino distribution functions in self-consistent simulations of
stellar core collapse and postbounce evolution. It implements a dynamically
adaptive grid in comoving coordinates. Most macroscopically interesting
physical quantities are defined by expectation values of the distribution
function. We optimize the finite differencing of the microscopic transport
equation for a consistent evolution of important expectation values. We test
our code in simulations launched from progenitor stars with 13 solar masses and
40 solar masses. ~0.5 s after core collapse and bounce, the protoneutron star
in the latter case reaches its maximum mass and collapses further to form a
black hole. When the hydrostatic gravitational contraction sets in, we find a
transient increase in electron flavor neutrino luminosities due to a change in
the accretion rate. The muon- and tauon-neutrino luminosities and rms energies,
however, continue to rise because previously shock-heated material with a
non-degenerate electron gas starts to replace the cool degenerate material at
their production site. We demonstrate this by supplementing the concept of
neutrinospheres with a more detailed statistical description of the origin of
escaping neutrinos. We compare the evolution of the 13 solar mass progenitor
star to simulations with the MGFLD approximation, based on a recently developed
flux limiter. We find similar results in the postbounce phase and validate this
MGFLD approach for the spherically symmetric case with standard input physics.Comment: reformatted to 63 pages, 24 figures, to be published in ApJ
An apprach to generate large and small leptonic mixing angles
We take up the point of view that Yukawa couplings can be either 0 or 1, and
the mass patterns of fermions are generated purely from the structure of the
Yukawa matrices. We utilize such neutrino as well as charged leptonic textures
which lead to (maximal) mixing angles of in each sector for relevant
transitions. The combined leptonic CKM mixing angles are
which lead to very small relevant to solar neutrino and LSND
experiments. We propose that on the other hand the absence of the charged
leptonic partner of the sterile neutrino maintains the angle from the
neutrino sector for the transition and hence
atmospheric neutrino anomaly is explained through maximal mixing
Magnus Expansion and Three-Neutrino Oscillations in Matter
We present a semi-analytical derivation of the survival probability of solar
neutrinos in the three generation scheme, based on the Magnus approximation of
the evolution operator of a three level system, and assuming a mass hierarchy
among neutrino mass eigenstates. We have used an exponential profile for the
solar electron density in our approximation. The different interesting density
regions that appear throughout the propagation are analyzed. Finally, some
comments on the allowed regions in the solar neutrino parameter space are
addressed.Comment: RevTex4 style, 5 pages including 5 figures. Presented at Mexican
School of Astrophysics 2002, Guanajuato, Mexico, 31 Jul - 7 Aug 2002. Final
version to appear in the Proceedings of IX Mexican Workshop on Particles and
Fields Physics Beyond the Standard Model, Colima Col. Mexico, November 17-22,
200
Chargino Production at an e-e- Collider
The chargino pair production in collisions with their subsequent
decays are considered within SUSY models with R-parity violation and with
lepton number non-conservation. The production process ( TeV) is
predicted to be large in a wide range of both sneutrino and chargino masses.
The influence of all virtual sneutrino states and their mixings with electrons
are taken into account. Some specific situations are pointed out when
significant suppressions of the cross section can take place. The chargino
decays are discussed for either the chargino as LSP or the chargino as heavier
sparticle. In both cases unique signals are possible with up to six charged
fermions and without missing energy.Comment: 9 page
Limits on Active-Sterile Neutrino Mixing and the Primordial Deuterium Abundance
Studies of limits on active-sterile neutrino mixing derived from big bang
nucleosynthesis considerations are extended to consider the dependance of these
constraints on the primordial deuterium abundance. This study is motivated by
recent measurements of D/H in quasar absorption systems, which at present yield
discordant results. Limits on active-sterile mixing are somewhat relaxed for
high D/H. For low D/H (), no active-sterile neutrino
mixing is allowed by currently popular upper limits on the primordial He
abundance . For such low primordial D/H values, the observational inference
of active-sterile neutrino mixing by upcoming solar neutrino experiments would
imply that has been systematically underestimated, unless there is new
physics not included in standard BBN.Comment: 10 pages + 2 figures, uses revtex macros, submitted to Phys. Rev. D.
Corrected figure captions and an added referenc
Effects of Strong Magnetic Fields on Neutron Star Structure
We study static neutron stars with poloidal magnetic fields and a simple
class of electric current distributions consistent with the requirement of
stationarity. For this class of electric current distributions, we find that
magnetic fields are too large for static configurations to exist when the
magnetic force pushes a sufficient amount of mass off-center that the
gravitational force points outward near the origin in the equatorial plane. (In
our coordinates an outward gravitational force corresponds to , where and are respectively time and radial
coordinates and is coefficient of in the line element.) For the
equations of state (EOSs) employed in previous work, we obtain configurations
of higher mass than had been reported; we also present results with more recent
EOSs. For all EOSs studied, we find that the maximum mass among these static
configurations with magnetic fields is noticeably larger than the maximum mass
attainable by uniform rotation, and that for fixed values of baryon number the
maximum mass configurations are all characterized by an off-center density
maximum.Comment: Submitted to the Astrophysical Journal. 37 pages, 8 figures, uses
aastex macro
- …
