509 research outputs found
Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities
Radiation pressure can couple the mechanical modes of an optical cavity structure to its optical modes, leading to parametric oscillation instability. This regime is characterized by regenerative oscillation of the mechanical cavity eigenmodes. Here, we present the first observation of this effect with a detailed theoretical and experimental analysis of these oscillations in ultra-high-Q microtoroids. Embodied within a microscale, chip-based device, this mechanism can benefit both research into macroscale quantum mechanical phenomena and improve the understanding of the mechanism within the context of laser interferometer gravitational-wave observatory (LIGO). It also suggests that new technologies are possible that will leverage the phenomenon within photonics
Characterization and scanning probe spectroscopy of radiation-pressure induced mechanical oscillation of a microcavity
Microcavities can enter a regime where radiation pressure causes oscillation of mechanical cavity eigenmodes. We present a detailed experimental and theoretical understanding of this effect, and report direct scanning probe spectroscopy of the micro-mechanical modes
Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity
The theoretical work of V.B. Braginsky predicted that radiation pressure can
couple the mechanical, mirror-eigenmodes of a Fabry-Perot resonator to it's
optical modes, leading to a parametric oscillation instability. This regime is
characterized by regenerative mechanical oscillation of the mechanical mirror
eigenmodes. We have recently observed the excitation of mechanical modes in an
ultra-high-Q optical microcavity. Here, we present a detailed experimental
analysis of this effect and demonstrate that radiation pressure is the
excitation mechanism of the observed mechanical oscillations
Photonic clocks, Raman lasers, and Biosensors on Silicon
Micro-resonators on silicon having Q factors as high as 500 million are described, and used to demonstrate radio-frequency mechanical oscillators, micro-Raman and parametric sources with sub-100 microwatt thresholds, visible sources, as well as high-sensitivity, biological detectors
Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span
A robust wide band (850 nm) fiber coupler to a whispering-gallery cavity with ultra-high quality factor is experimentally demonstrated. The device trades off ideality for broad-band, efficient input coupling. Output coupling efficiency can remain high enough for practical applications wherein pumping and power extraction must occur over very broad wavelength spans
Level-crossing and modal structure in microdroplet resonators
We fabricate a liquid-core liquid-clad microcavity that is coupled to a
standard tapered fiber, and then experimentally map the whispering-gallery
modes of this droplet resonator. The shape of our resonator is similar to a
thin prolate spheroid, which makes space for many high-order transverse modes,
suggesting that some of them will share the same resonance frequency. Indeed,
we experimentally observe that more than half of the droplet's modes have a
sibling having the same frequency (to within linewidth) and therefore
exhibiting a standing interference-pattern
Observation of Spontaneous Brillouin Cooling
While radiation-pressure cooling is well known, the Brillouin scattering of
light from sound is considered an acousto-optical amplification-only process.
It was suggested that cooling could be possible in multi-resonance Brillouin
systems when phonons experience lower damping than light. However, this regime
was not accessible in traditional Brillouin systems since backscattering
enforces high acoustical frequencies associated with high mechanical damping.
Recently, forward Brillouin scattering in microcavities has allowed access to
low-frequency acoustical modes where mechanical dissipation is lower than
optical dissipation, in accordance with the requirements for cooling. Here we
experimentally demonstrate cooling via such a forward Brillouin process in a
microresonator. We show two regimes of operation for the Brillouin process:
acoustical amplification as is traditional, but also for the first time, a
Brillouin cooling regime. Cooling is mediated by an optical pump, and scattered
light, that beat and electrostrictively attenuate the Brownian motion of the
mechanical mode.Comment: Supplementary material include
Actuation of Micro-Optomechanical Systems Via Cavity-Enhanced Optical Dipole Forces
We demonstrate a new type of optomechanical system employing a movable,
micron-scale waveguide evanescently-coupled to a high-Q optical microresonator.
Micron-scale displacements of the waveguide are observed for
milliwatt(mW)-level optical input powers. Measurement of the spatial variation
of the force on the waveguide indicates that it arises from a cavity-enhanced
optical dipole force due to the stored optical field of the resonator. This
force is used to realize an all-optical tunable filter operating with sub-mW
control power. A theoretical model of the system shows the maximum achievable
force to be independent of the intrinsic Q of the optical resonator and to
scale inversely with the cavity mode volume, suggesting that such forces may
become even more effective as devices approach the nanoscale.Comment: 4 pages, 5 figures. High resolution version available at
(http://copilot.caltech.edu/publications/CEODF_hires.pdf). For associated
movie, see (http://copilot.caltech.edu/research/optical_forces/index.htm
Optical frequency comb generation from a monolithic microresonator
Optical frequency combs provide equidistant frequency markers in the
infrared, visible and ultra-violet and can link an unknown optical frequency to
a radio or microwave frequency reference. Since their inception frequency combs
have triggered major advances in optical frequency metrology and precision
measurements and in applications such as broadband laser-based gas sensing8 and
molecular fingerprinting. Early work generated frequency combs by intra-cavity
phase modulation while to date frequency combs are generated utilizing the
comb-like mode structure of mode-locked lasers, whose repetition rate and
carrier envelope phase can be stabilized. Here, we report an entirely novel
approach in which equally spaced frequency markers are generated from a
continuous wave (CW) pump laser of a known frequency interacting with the modes
of a monolithic high-Q microresonator13 via the Kerr nonlinearity. The
intrinsically broadband nature of parametric gain enables the generation of
discrete comb modes over a 500 nm wide span (ca. 70 THz) around 1550 nm without
relying on any external spectral broadening. Optical-heterodyne-based
measurements reveal that cascaded parametric interactions give rise to an
optical frequency comb, overcoming passive cavity dispersion. The uniformity of
the mode spacing has been verified to within a relative experimental precision
of 7.3*10(-18).Comment: Manuscript and Supplementary Informatio
Determination of the vacuum optomechanical coupling rate using frequency noise calibration
The strength of optomechanical interactions in a cavity optomechanical system
can be quantified by a vacuum coupling rate \vcr analogous to cavity quantum
electrodynamics. This single figure of merit removes the ambiguity in the
frequently quoted coupling parameter defining the frequency shift for a given
mechanical displacement, and the effective mass of the mechanical mode. Here we
demonstrate and verify a straightforward experimental technique to derive the
vacuum optomechanical coupling rate. It only requires applying a known
frequency modulation of the employed electromagnetic probe field and knowledge
of the mechanical oscillator's occupation. The method is experimentally
verified for a micromechanical mode in a toroidal whispering-gallery-resonator
and a nanomechanical oscillator coupled to a toroidal cavity via its near
field.Comment: 11 pages, 2 figure
- …
