34 research outputs found
Bridging reproductive and microbial ecology: a case study in arbuscular mycorrhizal fungi
Offspring size is a key trait for understanding the reproductive ecology of species, yet studies addressing the ecological meaning of offspring size have so far been limited to macro-organisms. We consider this a missed opportunity in microbial ecology and provide what we believe is the first formal study of offspring-size variation in microbes using reproductive models developed for macro-organisms. We mapped the entire distribution of fungal spore size in the arbuscular mycorrhizal (AM) fungi (subphylum Glomeromycotina) and tested allometric expectations of this trait to offspring (spore) output and body size. Our results reveal a potential paradox in the reproductive ecology of AM fungi: while large spore-size variation is maintained through evolutionary time (independent of body size), increases in spore size trade off with spore output. That is, parental mycelia of large-spored species produce fewer spores and thus may have a fitness disadvantage compared to small-spored species. The persistence of the large-spore strategy, despite this apparent fitness disadvantage, suggests the existence of advantages to large-spored species that could manifest later in fungal life history. Thus, we consider that solving this paradox opens the door to fruitful future research establishing the relationship between offspring size and other AM life history traits
Proteoform-resolved profiling of plasminogen activation reveals novel abundant phosphorylation site and primary N-terminal cleavage site
Plasminogen (Plg), the zymogen of plasmin (Plm), is a glycoprotein involved in fibrinolysis and a wide variety of other physiological processes. Plg dysregulation has been implicated in a range of diseases. Classically, human Plg is categorized into two types, supposedly having different functional features, based on the presence (type I) or absence (type II) of a single N-linked glycan. Using high-resolution native mass spectrometry, we uncovered that the proteoform profiles of human Plg (and Plm) are substantially more extensive than this simple binary classification. In samples derived from human plasma, we identified up to 14 distinct proteoforms of Plg, including a novel highly stoichiometric phosphorylation site at Ser339. To elucidate the potential functional effects of these post-translational modifications, we performed proteoform-resolved kinetic analyses of the Plg-to-Plm conversion using several canonical activators. This conversion is thought to involve at least two independent cleavage events: one to remove the N-terminal peptide and another to release the active catalytic site. Our analyses reveal that these processes are not independent but are instead tightly regulated and occur in a step-wise manner. Notably, N-terminal cleavage at the canonical site (Lys77) does not occur directly from intact Plg. Instead, an activation intermediate corresponding to cleavage at Arg68 is initially produced, which only then is further processed to the canonical Lys77 product. Based on our results, we propose a refined categorization for human Plg proteoforms. In addition, we reveal that the proteoform profile of human Plg is more extensive than that of rat Plg, which lacks, for instance, the here-described phosphorylation at Ser339
Association of germline variants in the <i>APOBEC3</i> region with cancer risk and enrichment with APOBEC-signature mutations in tumors
Targeted analysis of lysosomal directed proteins and their sites of mannose-6-phosphate modification
Mannose-6-phosphate (M6P) is a distinctive post-translational modification critical for trafficking of lysosomal acid hydrolases into the lysosome. Improper trafficking into the lysosome, and/or lack of certain hydrolases, results in a toxic accumulation of their substrates within the lysosomes. To gain insight into the enzymes destined to the lysosome these glycoproteins can be distinctively enriched and studied using their unique M6P tag. Here we demonstrate, by adapting a protocol optimized for the enrichment of phosphopeptides using Fe3+-IMAC chromatography, that proteome-wide M6P glycopeptides can be selectively enriched and subsequently analyzed by mass spectrometry, taking advantage of exclusive phosphomannose oxonium fragment marker ions. As proof-of-concept of this protocol, applying it to HeLa cells, we identified hundreds of M6P-modified glycopeptides on 35 M6P-modified glycoproteins. We next targeted CHO cells, either wild-type or cells deficient in Acp2 and Acp5, which are acid phosphatases targeting M6P. In the KO CHO cells we observed a 20-fold increase of the abundance of the M6P-modification on endogenous CHO glycoproteins but also on the recombinantly over-expressed lysosomal human alpha-galactosidase. We conclude that our approach could thus be of general interest for characterization of M6P glycoproteomes as well as characterization of lysosomal enzymes used as treatment in enzyme replacement therapies targeting lysosomal storage diseases
Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry
Most proteins in serum are glycosylated, with several
annotated
as biomarkers and thus diagnostically important and of interest for
their role in disease. Most methods for analyzing serum glycoproteins
employ either glycan release or glycopeptide centric mass spectrometry-based
approaches, which provide excellent tools for analyzing known glycans
but neglect previously undefined or unknown glycosylation and/or other
co-occurring modifications. High-resolution native mass spectrometry
is a relatively new technique for the analysis of intact glycoproteins,
providing a “what you see is what you get” mass profile
of a protein, allowing the qualitative and quantitative observation
of all modifications present. So far, a disadvantage of this approach
has been that it centers mostly on just one specific serum glycoprotein
at the time. To address this issue, we introduce an ion-exchange chromatography-based
fractionation method capable of isolating and analyzing, in parallel,
over 20 serum (glyco)proteins, covering a mass range between 30 and
190 kDa, from 150 μL of serum. Although generating data in parallel
for all these 20 proteins, we focus the discussion on the very complex
proteoform profiles of four selected proteins, i.e., α-1-antitrypsin,
ceruloplasmin, hemopexin, and complement protein C3. Our analyses
provide an insight into the extensive proteoform landscape of serum
proteins in individual donors, caused by the occurrence of various N- and O-glycans, protein cysteinylation,
and co-occurring genetic variants. Moreover, native mass intact mass
profiling also provided an edge over alternative approaches revealing
the presence of apo- and holo-forms of ceruloplasmin and the endogenous
proteolytic processing in plasma of among others complement protein
C3. We also applied our approach to a small cohort of serum samples
from healthy and diseased individuals. In these, we qualitatively
and quantitatively monitored the changes in proteoform profiles of
ceruloplasmin and revealed a substantial increase in fucosylation
and glycan occupancy in patients with late-stage hepatocellular carcinoma
and pancreatic cancer as compared to healthy donor samples
Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry
Most proteins in serum are glycosylated, with several
annotated
as biomarkers and thus diagnostically important and of interest for
their role in disease. Most methods for analyzing serum glycoproteins
employ either glycan release or glycopeptide centric mass spectrometry-based
approaches, which provide excellent tools for analyzing known glycans
but neglect previously undefined or unknown glycosylation and/or other
co-occurring modifications. High-resolution native mass spectrometry
is a relatively new technique for the analysis of intact glycoproteins,
providing a “what you see is what you get” mass profile
of a protein, allowing the qualitative and quantitative observation
of all modifications present. So far, a disadvantage of this approach
has been that it centers mostly on just one specific serum glycoprotein
at the time. To address this issue, we introduce an ion-exchange chromatography-based
fractionation method capable of isolating and analyzing, in parallel,
over 20 serum (glyco)proteins, covering a mass range between 30 and
190 kDa, from 150 μL of serum. Although generating data in parallel
for all these 20 proteins, we focus the discussion on the very complex
proteoform profiles of four selected proteins, i.e., α-1-antitrypsin,
ceruloplasmin, hemopexin, and complement protein C3. Our analyses
provide an insight into the extensive proteoform landscape of serum
proteins in individual donors, caused by the occurrence of various N- and O-glycans, protein cysteinylation,
and co-occurring genetic variants. Moreover, native mass intact mass
profiling also provided an edge over alternative approaches revealing
the presence of apo- and holo-forms of ceruloplasmin and the endogenous
proteolytic processing in plasma of among others complement protein
C3. We also applied our approach to a small cohort of serum samples
from healthy and diseased individuals. In these, we qualitatively
and quantitatively monitored the changes in proteoform profiles of
ceruloplasmin and revealed a substantial increase in fucosylation
and glycan occupancy in patients with late-stage hepatocellular carcinoma
and pancreatic cancer as compared to healthy donor samples
Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry
Most proteins in serum are glycosylated, with several
annotated
as biomarkers and thus diagnostically important and of interest for
their role in disease. Most methods for analyzing serum glycoproteins
employ either glycan release or glycopeptide centric mass spectrometry-based
approaches, which provide excellent tools for analyzing known glycans
but neglect previously undefined or unknown glycosylation and/or other
co-occurring modifications. High-resolution native mass spectrometry
is a relatively new technique for the analysis of intact glycoproteins,
providing a “what you see is what you get” mass profile
of a protein, allowing the qualitative and quantitative observation
of all modifications present. So far, a disadvantage of this approach
has been that it centers mostly on just one specific serum glycoprotein
at the time. To address this issue, we introduce an ion-exchange chromatography-based
fractionation method capable of isolating and analyzing, in parallel,
over 20 serum (glyco)proteins, covering a mass range between 30 and
190 kDa, from 150 μL of serum. Although generating data in parallel
for all these 20 proteins, we focus the discussion on the very complex
proteoform profiles of four selected proteins, i.e., α-1-antitrypsin,
ceruloplasmin, hemopexin, and complement protein C3. Our analyses
provide an insight into the extensive proteoform landscape of serum
proteins in individual donors, caused by the occurrence of various N- and O-glycans, protein cysteinylation,
and co-occurring genetic variants. Moreover, native mass intact mass
profiling also provided an edge over alternative approaches revealing
the presence of apo- and holo-forms of ceruloplasmin and the endogenous
proteolytic processing in plasma of among others complement protein
C3. We also applied our approach to a small cohort of serum samples
from healthy and diseased individuals. In these, we qualitatively
and quantitatively monitored the changes in proteoform profiles of
ceruloplasmin and revealed a substantial increase in fucosylation
and glycan occupancy in patients with late-stage hepatocellular carcinoma
and pancreatic cancer as compared to healthy donor samples
Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry
Most proteins in serum are glycosylated, with several
annotated
as biomarkers and thus diagnostically important and of interest for
their role in disease. Most methods for analyzing serum glycoproteins
employ either glycan release or glycopeptide centric mass spectrometry-based
approaches, which provide excellent tools for analyzing known glycans
but neglect previously undefined or unknown glycosylation and/or other
co-occurring modifications. High-resolution native mass spectrometry
is a relatively new technique for the analysis of intact glycoproteins,
providing a “what you see is what you get” mass profile
of a protein, allowing the qualitative and quantitative observation
of all modifications present. So far, a disadvantage of this approach
has been that it centers mostly on just one specific serum glycoprotein
at the time. To address this issue, we introduce an ion-exchange chromatography-based
fractionation method capable of isolating and analyzing, in parallel,
over 20 serum (glyco)proteins, covering a mass range between 30 and
190 kDa, from 150 μL of serum. Although generating data in parallel
for all these 20 proteins, we focus the discussion on the very complex
proteoform profiles of four selected proteins, i.e., α-1-antitrypsin,
ceruloplasmin, hemopexin, and complement protein C3. Our analyses
provide an insight into the extensive proteoform landscape of serum
proteins in individual donors, caused by the occurrence of various N- and O-glycans, protein cysteinylation,
and co-occurring genetic variants. Moreover, native mass intact mass
profiling also provided an edge over alternative approaches revealing
the presence of apo- and holo-forms of ceruloplasmin and the endogenous
proteolytic processing in plasma of among others complement protein
C3. We also applied our approach to a small cohort of serum samples
from healthy and diseased individuals. In these, we qualitatively
and quantitatively monitored the changes in proteoform profiles of
ceruloplasmin and revealed a substantial increase in fucosylation
and glycan occupancy in patients with late-stage hepatocellular carcinoma
and pancreatic cancer as compared to healthy donor samples
APOBEC3A intratumoral DNA electroporation in mice
International audienceHuman APOBEC3A (A3A) cytidine deaminase shows pro-apoptotic properties resulting from hypermutation of genomic DNA, induction of double-stranded DNA breaks (DSBs) and G1 cell cycle arrest. Given this, we evaluated the antitumor efficacy of A3A by intratumoral electroporation of an A3A expression plasmid. DNA was repeatedly electroporated into B16OVA, B16Luc tumors of C57BL/6J mice as well as the aggressive fibrosarcoma Sarc2 tumor of HLA-A*0201/DRB1*0101 transgenic mice using noninvasive plate electrodes. Intratumoral electroporation of A3A plasmid DNA resulted in regression of ~50% of small B16OVA melanoma tumors that did not rebound in the following 2 months without treatment. Larger or more aggressive tumors escaped regression when so treated. As APOBEC3A was much less efficient in provoking hypermutation and DSBs in B16OVA cells compared with human or quail cells, it is likely that APOBEC3A would be more efficient in a human setting than in a mouse model
Targeted analysis of lysosomal directed proteins and their sites of mannose-6-phosphate modification
Mannose-6-phosphate (M6P) is a distinctive post-translational modification critical for trafficking of lysosomal acid hydrolases into the lysosome. Improper trafficking into the lysosome, and/or lack of certain hydrolases, results in a toxic accumulation of their substrates within the lysosomes. To gain insight into the enzymes destined to the lysosome these glycoproteins can be distinctively enriched and studied using their unique M6P tag. Here we demonstrate, by adapting a protocol optimized for the enrichment of phosphopeptides using Fe3+-IMAC chromatography, that proteome-wide M6P glycopeptides can be selectively enriched and subsequently analyzed by mass spectrometry, taking advantage of exclusive phosphomannose oxonium fragment marker ions. As proof-of-concept of this protocol, applying it to HeLa cells, we identified hundreds of M6P-modified glycopeptides on 35 M6P-modified glycoproteins. We next targeted CHO cells, either wild-type or cells deficient in Acp2 and Acp5, which are acid phosphatases targeting M6P. In the KO CHO cells we observed a 20-fold increase of the abundance of the M6P-modification on endogenous CHO glycoproteins but also on the recombinantly over-expressed lysosomal human alpha-galactosidase. We conclude that our approach could thus be of general interest for characterization of M6P glycoproteomes as well as characterization of lysosomal enzymes used as treatment in enzyme replacement therapies targeting lysosomal storage diseases
