6,080 research outputs found
Multicanonical Spin Glass Simulations
We report a Monte Carlo simulation of the Edwards-Anderson spin glass
model within the recently introduced multicanonical ensemble. Replica on
lattices of size up to are investigated. Once a true groundstate
is found, we are able to give a lower bound on the number of statistically
independent groundstates sampled. Temperature dependence of the energy, entropy
and other quantities of interest are easily calculable. In particular we report
the groundstate results. Computations involving the spin glass order parameter
are more tedious. Our data indicate that the large increase of the
ergodicity time is reduced to an approximately power law. Altogether the
results suggest that the multicanonical ensemble improves the situation of
simulations for spin glasses and other systems which have to cope with similar
problems of conflicting constraints.Comment: 24 page
Tardos fingerprinting is better than we thought
We review the fingerprinting scheme by Tardos and show that it has a much
better performance than suggested by the proofs in Tardos' original paper. In
particular, the length of the codewords can be significantly reduced.
First we generalize the proofs of the false positive and false negative error
probabilities with the following modifications: (1) we replace Tardos'
hard-coded numbers by variables and (2) we allow for independently chosen false
positive and false negative error rates. It turns out that all the
collusion-resistance properties can still be proven when the code length is
reduced by a factor of more than 2.
Second, we study the statistical properties of the fingerprinting scheme, in
particular the average and variance of the accusations. We identify which
colluder strategy forces the content owner to employ the longest code. Using a
gaussian approximation for the probability density functions of the
accusations, we show that the required false negative and false positive error
rate can be achieved with codes that are a factor 2 shorter than required for
rigid proofs.
Combining the results of these two approaches, we show that the Tardos scheme
can be used with a code length approximately 5 times shorter than in the
original construction.Comment: Modified presentation of result
Deriving feasible deployment alternatives for parallel and distributed simulation systems
Cataloged from PDF version of article.Parallel and distributed simulations (PADS) realize the distributed execution of a simulation system over multiple physical resources. To realize the execution of PADS, different simulation infrastructures such as HLA, DIS and TENA have been defined. Recently, the Distributed Simulation Engineering and Execution Process (DSEEP) that supports the mapping of the simulations on the infrastructures has been defined. An important recommended task in DSEEP is the evaluation of the performance of the simulation systems at the design phase. In general, the performance of a simulation is largely influenced by the allocation of member applications to the resources. Usually, the deployment of the applications to the resources can be done in many different ways. DSEEP does not provide a concrete approach for evaluating the deployment alternatives. Moreover, current approaches that can be used for realizing various DSEEP activities do not yet provide adequate support for this purpose. We provide a concrete approach for deriving feasible deployment alternatives based on the simulation system and the available resources. In the approach, first the simulation components and the resources are designed. The design is used to define alternative execution configurations, and based on the design and the execution configuration; a feasible deployment alternative can be algorithmically derived. Tool support is developed for the simulation design, the execution configuration definition and the automatic generation of feasible deployment alternatives. The approach has been applied within a large-scale industrial case study for simulating Electronic Warfare systems. © 2013 ACM
Reversible watermarking scheme with image-independent embedding capacity
Permanent distortion is one of the main drawbacks of all the irreversible watermarking schemes. Attempts to recover the original signal after the signal passing the authentication process are being made starting just a few years ago. Some common problems, such as salt-and-pepper artefacts owing to intensity wraparound and low embedding capacity, can now be resolved. However, some significant problems remain unsolved. First, the embedding capacity is signal-dependent, i.e., capacity varies significantly depending on the nature of the host signal. The direct impact of this is compromised security for signals with low capacity. Some signals may be even non-embeddable. Secondly, while seriously tackled in irreversible watermarking schemes, the well-known problem of block-wise dependence, which opens a security gap for the vector quantisation attack and transplantation attack, are not addressed by researchers of the reversible schemes. This work proposes a reversible watermarking scheme with near-constant signal-independent embedding capacity and immunity to the vector quantisation attack and transplantation attack
Kinematic landslide monitoring with Kalman filtering
International audienceLandslides are serious geologic disasters that threat human life and property in every country. In addition, landslides are one of the most important natural phenomena, which directly or indirectly affect countries' economy. Turkey is also the country that is under the threat of landslides. Landslides frequently occur in all of the Black Sea region as well as in many parts of Marmara, East Anatolia, and Mediterranean regions. Since these landslides resulted in destruction, they are ranked as the second important natural phenomenon that comes after earthquake in Turkey. In recent years several landslides happened after heavy rains and the resulting floods. This makes the landslide monitoring and mitigation techniques an important study subject for the related professional disciplines in Turkey. The investigations on surface deformations are conducted to define the boundaries of the landslide, size, level of activity and direction(s) of the movement, and to determine individual moving blocks of the main slide. This study focuses on the use of a kinematic deformation analysis based on Kalman Filtering at a landslide area near Istanbul. Kinematic deformation analysis has been applied in a landslide area, which is located to the north of Istanbul city. Positional data were collected using GPS technique. As part of the study, conventional static deformation analysis methodology has also been applied on the same data. The results and comparisons are discussed in this paper
Privacy Preserving Multi-Server k-means Computation over Horizontally Partitioned Data
The k-means clustering is one of the most popular clustering algorithms in
data mining. Recently a lot of research has been concentrated on the algorithm
when the dataset is divided into multiple parties or when the dataset is too
large to be handled by the data owner. In the latter case, usually some servers
are hired to perform the task of clustering. The dataset is divided by the data
owner among the servers who together perform the k-means and return the cluster
labels to the owner. The major challenge in this method is to prevent the
servers from gaining substantial information about the actual data of the
owner. Several algorithms have been designed in the past that provide
cryptographic solutions to perform privacy preserving k-means. We provide a new
method to perform k-means over a large set using multiple servers. Our
technique avoids heavy cryptographic computations and instead we use a simple
randomization technique to preserve the privacy of the data. The k-means
computed has exactly the same efficiency and accuracy as the k-means computed
over the original dataset without any randomization. We argue that our
algorithm is secure against honest but curious and passive adversary.Comment: 19 pages, 4 tables. International Conference on Information Systems
Security. Springer, Cham, 201
- …
