598 research outputs found
Updated estimate of the duration of the meningo-encephalitic stage in gambiense human African trypanosomiasis
Background:
The duration of the stages of HAT is an important factor in epidemiological studies and intervention planning. Previously, we published estimates of the duration of the haemo-lymphatic stage 1 and meningo-encephalitic stage 2 of the gambiense form of human African trypanosomiasis (HAT), in the absence of treatment. Here we revise the estimate of stage 2 duration, computed based on data from Uganda and South Sudan, by adjusting observed infection prevalence for incomplete case detection coverage and diagnostic inaccuracy.
Findings:
The revised best estimate for the mean duration of stage 2 is 252 days (95% CI 171–399), about half of our initial best estimate, giving a total mean duration of untreated gambiense HAT infection of approximately 2 years and 2 months.
Conclusions:
Our new estimate provides improved information on the transmission dynamics of this neglected tropical disease in Uganda and South Sudan. We stress that there remains considerable variability around the estimated mean values, and that one must be cautious in applying these results to other foci
Ivermectin Treatment of a Traveler Who Returned from Peru with Cutaneous Gnathostomiasis
We describe a 21-year-old patient who experienced a relapse of cutaneous gnathostomiasis after receiving initial treatment with albendazole and who had a successful outcome after receiving a short course of ivermectin for the relapse. This is the first reported case of gnathostomiasis acquired by a human in Per
Updated estimate of the duration of the meningo-encephalitic stage in gambiense human African trypanosomiasis.
BACKGROUND: The duration of the stages of HAT is an important factor in epidemiological studies and intervention planning. Previously, we published estimates of the duration of the haemo-lymphatic stage 1 and meningo-encephalitic stage 2 of the gambiense form of human African trypanosomiasis (HAT), in the absence of treatment. Here we revise the estimate of stage 2 duration, computed based on data from Uganda and South Sudan, by adjusting observed infection prevalence for incomplete case detection coverage and diagnostic inaccuracy. FINDINGS: The revised best estimate for the mean duration of stage 2 is 252 days (95% CI 171-399), about half of our initial best estimate, giving a total mean duration of untreated gambiense HAT infection of approximately 2 years and 2 months. CONCLUSIONS: Our new estimate provides improved information on the transmission dynamics of this neglected tropical disease in Uganda and South Sudan. We stress that there remains considerable variability around the estimated mean values, and that one must be cautious in applying these results to other foci
Effectiveness of a 10-day melarsoprol schedule for the treatment of late-stage human African trypanosomiasis: confirmation from a multinational study (IMPAMEL II).
BACKGROUND: Treatment of late-stage human African trypanosomiasis (HAT) with melarsoprol can be improved by shortening the regimen. A previous trial demonstrated the safety and efficacy of a 10-day treatment schedule. We demonstrate the effectiveness of this schedule in a noncontrolled, multinational drug-utilization study. METHODS: A total of 2020 patients with late-stage HAT were treated with the 10-day melarsoprol schedule in 16 centers in 7 African countries. We assessed outcome on the basis of major adverse events and the cure rate after treatment and during 2 years of follow-up. RESULTS: The cure rate 24 h after treatment was 93.9%; 2 years later, it was 86.2%. However, 49.3% of patients were lost to follow-up. The overall fatality rate was 5.9%. Of treated patients, 8.7% had an encephalopathic syndrome that was fatal 45.5% of the time. The rate of severe bullous and maculopapular eruptions was 0.8% and 6.8%, respectively. CONCLUSIONS: The 10-day treatment schedule was well implemented in the field and was effective. It reduces treatment duration, drug amount, and hospitalization costs per patient, and it increases treatment-center capacity. The shorter protocol has been recommended by the International Scientific Council for Trypanosomiasis Research and Control for the treatment of late-stage HAT caused by Trypanosoma brucei gambiense
Estimates of the duration of the early and late stage of gambiense sleeping sickness.
BACKGROUND: The durations of untreated stage 1 (early stage, haemo-lymphatic) and stage 2 (late stage, meningo-encephalitic) human African trypanosomiasis (sleeping sickness) due to Trypanosoma brucei gambiense are poorly quantified, but key to predicting the impact of screening on transmission. Here, we outline a method to estimate these parameters. METHODS: We first model the duration of stage 1 through survival analysis of untreated serological suspects detected during Médecins Sans Frontières interventions in Uganda and Sudan. We then deduce the duration of stage 2 based on the stage 1 to stage 2 ratio observed during active case detection in villages within the same sites. RESULTS: Survival in stage 1 appears to decay exponentially (daily rate = 0.0019; mean stage 1 duration = 526 days [95%CI 357 to 833]), possibly explaining past reports of abnormally long duration. Assuming epidemiological equilibrium, we estimate a similar duration of stage 2 (500 days [95%CI 345 to 769]), for a total of nearly three years in the absence of treatment. CONCLUSION: Robust estimates of these basic epidemiological parameters are essential to formulating a quantitative understanding of sleeping sickness dynamics, and will facilitate the evaluation of different possible control strategies.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Risk factors of visceral leishmaniasis in East Africa: a case-control study in Pokot territory of Kenya and Uganda
BACKGROUND: In East Africa, visceral leishmaniasis (VL) is endemic in parts of Sudan, Ethiopia, Somalia, Kenya and Uganda. It is caused by Leishmania donovani and transmitted by the sandfly vector Phlebotomus martini. In the Pokot focus, reaching from western Kenya into eastern Uganda, formulation of a prevention strategy has been hindered by the lack of knowledge on VL risk factors as well as by lack of support from health sector donors. The present study was conducted to establish the necessary evidence-base and to stimulate interest in supporting the control of this neglected tropical disease in Uganda and Kenya. METHODS: A case-control study was carried out from June to December 2006. Cases were recruited at Amudat hospital, Nakapiripirit district, Uganda, after clinical and parasitological confirmation of symptomatic VL infection. Controls were individuals that tested negative using a rK39 antigen-based dipstick, which were recruited at random from the same communities as the cases. Data were analysed using conditional logistic regression. RESULTS: Ninety-three cases and 226 controls were recruited into the study. Multivariate analysis identified low socio-economic status and treating livestock with insecticide as risk factors for VL. Sleeping near animals, owning a mosquito net and knowing about VL symptoms were associated with a reduced risk of VL. CONCLUSIONS: VL affects the poorest of the poor of the Pokot tribe. Distribution of insecticide-treated mosquito nets combined with dissemination of culturally appropriate behaviour-change education is likely to be an effective prevention strategy
Growth in densely populated Asia: implications for primary product exporters
Economic growth and integration in Asia is rapidly increasing the global economic importance of the region. To the extent that this growth continues and is strongest in natural resource-poor Asian economies, it will add to global demand for imports of primary products, to the benefit of (especially nearby) resource-abundant countries. How will global production, consumption and trade patterns change by 2030 in the course of such economic developments and structural changes? We address this question using the GTAP model and Version 8.1 of the 2007 GTAP database, together with supplementary data from a range of sources, to support projections of the global economy from 2007 to 2030 under various scenarios. Factor endowments and real gross domestic product are assumed to grow at exogenous rates, and trade-related policies are kept unchanged to generate a core baseline, which is compared with an alternative slower growth scenario. We also consider the impact of several policy changes aimed at increasing China's agricultural self-sufficiency relative to the 2030 baseline. Policy implications for countries of the Asia-Pacific region are drawn out in the final section
Hemodynamics optimization during off-pump coronary artery bypass: the ‘no compression' technique
Objective: Heart manipulation during OPCAB may cause hemodynamical instability in particular for access to the posterior and lateral walls. The ‘no compression' technique involves enucleation of the heart without any compression on the cavities, and stabilization of the target area with a suction device. The impact of this technique on hemodynamics is assessed. Methods: In order to analyze a homogeneous group, 26 consecutive patients with triple grafts, one to each side of the heart in the same sequential order (posterior, lateral and anterior wall successively) were selected. Heart rate (HR), mean pulmonary arterial pressure (PAP, mmHg), pulmonary capillary wedge pressure (PCWP, mmHg), mean arterial pressure (MAP, mmHg), cardiac output index (COI, l/min per m2), and central venous saturation (SvO2,%) were monitored. A coronary shunt was used for all the anastomoses. Results: HR was stable with baseline value of 60±10 and the highest value for the anterior wall, 63.6±8 (P=0.23). PAP and PCWP exhibited their highest increase, when compared with baseline, for the lateral wall, 23.9±4.7 vs. 20.7±6.2 (P=0.06), and 17.2±4.7 vs. 14.9±5.6 (P=0.16), respectively. MAP, COI and SvO2, exhibited their largest drop, when compared with baseline, for the lateral wall too, 73.1±9.1 vs. 77.1±7.5 (P=0.12), 1.99±0.47 vs. 2.26±0.55 (P=0.09), and 70.5±8.4 vs. 74.8±9.3 (P=0.12), respectively. Conclusions: None of the hemodynamical parameter differed significantly from baseline value for all three territories. While hemodynamics was perfectly maintained during the posterior and anterior walls revascularization, exposure of the lateral wall led to marginal changes onl
Accuracy of five algorithms to diagnose gambiense human African trypanosomiasis.
Algorithms to diagnose gambiense human African trypanosomiasis (HAT, sleeping sickness) are often complex due to the unsatisfactory sensitivity and/or specificity of available tests, and typically include a screening (serological), confirmation (parasitological) and staging component. There is insufficient evidence on the relative accuracy of these algorithms. This paper presents estimates of the accuracy of five algorithms used by past Médecins Sans Frontières programmes in the Republic of Congo, Southern Sudan and Uganda
Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background
The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability
- …
