230 research outputs found
Biogeography of key mesozooplankton species in the North Atlantic and egg production of Calanus finmarchicus
Here we present a new, pan-North-Atlantic compilation of data on key mesozooplankton species, including the most important copepod, Calanus finmarchicus. Distributional data of eight representative zooplankton taxa, from recent (2000–2009) Continuous Plankton Recorder data, are presented, along with basin-scale data of the phytoplankton colour index. Then we present a compilation of data on C. finmarchicus, including observations of abundance, demography, egg production and female size, with accompanying data on temperature and chlorophyll. This is a contribution by Canadian, European and US scientists and their institutions: http://doi.pangaea.de/10.1594/PANGAEA.820732, http://doi.pangaea.de/10.1594/PANGAEA.824423, http://doi.pangaea.de/10.1594/PANGAEA.828393 (please also see Melle et al., 2013; Castellani and Licandro, 2013; Jónasdóttir et al., 2014)
Exploitation of TerraSAR-X Data for Land use/Land Cover Analysis Using Object-Oriented Classification Approach in the African Sahel Area, Sudan.
Recently, object-oriented classification techniques based on image segmentation approaches are being studied using high-resolution satellite images to extract various thematic information. In this study different types of land use/land cover (LULC) types were analysed by employing object-oriented classification approach to dual TerraSAR-X images (HH and HV polarisation) at African Sahel. For that purpose, multi-resolution segmentation (MRS) of the Definiens software was used for creating the image objects. Using the feature space optimisation (FSO) tool the attributes of the TerraSAR-X image were optimised in order to obtain the best separability among classes for the LULC mapping. The backscattering coefficients (BSC) for some classes were observed to be different for HH and HV polarisations. The best separation distance of the tested spectral, shape and textural features showed different variations among the discriminated LULC classes. An overall accuracy of 84 % with a kappa value 0.82 was resulted from the classification scheme, while accuracy differences among the classes were kept minimal. Finally, the results highlighted the importance of a combine use of TerraSAR-X data and object-oriented classification approaches as a useful source of information and technique for LULC analysis in the African Sahel drylands
The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission
Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi‐perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency ∼100 Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi‐perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05–0.2fce by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first‐time 3‐D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi‐linear pitch angle diffusion and possible signatures of nonlinear interaction with high‐amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes
Population genomics of marine zooplankton
Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Bucklin, Ann et al. "Population Genomics of Marine Zooplankton." Population Genomics: Marine Organisms. Ed. Om P. Rajora and Marjorie Oleksiak. Springer, 2018. doi:10.1007/13836_2017_9.The exceptionally large population size and cosmopolitan biogeographic distribution that
distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of
population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has
slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated
species and diversity of genomic architecture, including highly-replicated genomes of many
crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is
transforming our ability to analyze population genetics and connectivity of marine zooplankton, and
providing new understanding and different answers than earlier analyses, which typically used
mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that,
despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic
populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population
connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are
critically needed to allow further examination of micro-evolution and local adaptation, including
identification of genes that show evidence of selection. These new tools will also enable further
examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to
discriminate genetic “noise” in large and patchy populations from local adaptation to environmental
conditions and change.Support was provided by the
US National Science Foundation to AB and RJO (PLR-1044982) and to RJO (MCB-1613856); support to
IS and MC was provided by Nord University (Norway)
Solar Orbiter's encounter with the tail of comet C/2019 Y4 (ATLAS): magnetic field draping and cometary pick-up ion waves
First observations and performance of the RPW instrument onboard the Solar Orbiter mission
The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is designed to measure in situ magnetic and electric fields and waves from the continuum up to several hundred kHz. The RPW also observes solar and heliospheric radio emissions up to 16 MHz. It was switched on and its antennae were successfully deployed two days after the launch of Solar Orbiter on February 10, 2020. Since then, the instrument has acquired enough data to make it possible to assess its performance and the electromagnetic disturbances it experiences. In this article, we assess its scientific performance and present the first RPW observations. In particular, we focus on a statistical analysis of the first observations of interplanetary dust by the instrument’s Thermal Noise Receiver. We also review the electro-magnetic disturbances that RPW suffers, especially those which potential users of the instrument data should be aware of before starting their research work
Solar wind current sheets and deHoffmann-Teller analysis. First results from Solar Orbiter's DC electric field measurements
Context: Solar Orbiter was launched on 10 February 2020 with the purpose of investigating solar and heliospheric physics using a payload of
instruments designed for both remote and in situ studies. Similar to the recently launched Parker Solar Probe, and unlike earlier missions, Solar
Orbiter carries instruments designed to measure low-frequency DC electric fields.
Aims: In this paper, we assess the quality of the low-frequency DC electric field measured by the Radio and Plasma Waves instrument (RPW) on
Solar Orbiter. In particular, we investigate the possibility of using Solar Orbiter’s DC electric and magnetic field data to estimate the solar wind
speed.
Methods: We used a deHoffmann-Teller (HT) analysis, based on measurements of the electric and magnetic fields, to find the velocity of solar
wind current sheets, which minimises a single component of the electric field. By comparing the HT velocity to the proton velocity measured by
the Proton and Alpha particle Sensor (PAS), we have developed a simple model for the effective antenna length, Leff of the E-field probes. We then
used the HT method to estimate the speed of the solar wind.
Results: Using the HT method, we find that the observed variations in Ey are often in excellent agreement with the variations in the magnetic field.
The magnitude of Ey
, however, is uncertain due to the fact that the Leff depends on the plasma environment. Here, we derive an empirical model
relating Leff to the Debye length, which we can use to improve the estimate of Ey and, consequently, the estimated solar wind speed.
Conclusions: The low-frequency electric field provided by RPW is of high quality. Using the deHoffmann-Teller analysis, Solar Orbiter’s magnetic
and electric field measurements can be used to estimate the solar wind speed when plasma data are unavailable
First-year ion-acoustic wave observations in the solar wind by the RPW/TDS instrument on board Solar Orbiter
Context. Electric field measurements of the Time Domain Sampler (TDS) receiver, part of the Radio and Plasma Waves (RPW) instrument on board Solar Orbiter, often exhibit very intense broadband wave emissions at frequencies below 20 kHz in the spacecraft frame. During the first year of the mission, the RPW/TDS instrument was operating from the first perihelion in mid-June 2020 and through the first flyby of Venus in late December 2020.
Aims. In this paper, we present a year-long study of electrostatic fluctuations observed in the solar wind at an interval of heliocentric distances from 0.5 to 1 AU. The RPW/TDS observations provide a nearly continuous data set for a statistical study of intense waves below the local plasma frequency.
Methods. The on-board and continuously collected and processed properties of waveform snapshots allow for the mapping plasma waves at frequencies between 200 Hz and 20 kHz. We used the triggered waveform snapshots and a Doppler-shifted solution of the dispersion relation for wave mode identification in order to carry out a detailed spectral and polarization analysis.
Results. Electrostatic ion-acoustic waves are the most common wave emissions observed between the local electron and proton plasma frequency by the TDS receiver during the first year of the mission. The occurrence rate of ion-acoustic waves peaks around perihelion at distances of 0.5 AU and decreases with increasing distances, with only a few waves detected per day at 0.9 AU. Waves are more likely to be observed when the local proton moments and magnetic field are highly variable. A more detailed analysis of more than 10000 triggered waveform snapshots shows the mean wave frequency at about 3 kHz and wave amplitude about 2.5 mV/m. The wave amplitude varies as R−1.38 with the heliocentric distance. The relative phase distribution between two components of the E-field projected in the Y-Z Spacecraft Reference Frame (SRF) plane shows a mostly linear wave polarization. Electric field fluctuations are closely aligned with the directions of the ambient field lines. Only a small number (3%) of ion-acoustic waves are observed at larger magnetic discontinuities
- …
