415 research outputs found

    Bias and temperature dependence of the noise in a single electron transistor

    Full text link
    A single electron transistor based on Al-AlO_x-Nb tunnel junctions was fabricated by shadow evaporation and in situ barrier formation. Its output current noise was measured, using a transimpedance amplifier setup, as a function of bias voltage, gain, and temperature, in the frequency range 1...300 Hz. The spot noise at 10 Hz is dominated by a gain dependent component, indicating that the main noise contribution comes from fluctuations at the input of the transistor. Deviations from ideal input charge noise behaviour are found in the form of a bias dependence of the differential charge equivalent noise, i. e. the derivative of current noise with respect to gain. The temperature dependence of this effect could indicate that heating is activating the noise sources, and that they are located inside or in the near vicinity of the junctions.Comment: 16 pages, 9 figures (EPS

    Pseudo-gap features of intrinsic tunneling in (HgBr_2)-Bi2212 single crystals

    Full text link
    The c-axis tunneling properties of both pristine Bi2212 and its HgBr2_2 intercalate have been measured in the temperature range 4.2 - 250 K. Lithographically patterned 7-10 unit-cell heigh mesa structures on the surfaces of these single crystals were investigated. Clear SIS-like tunneling curves for current applied in the c\it c-axis direction have been observed. The dynamic conductance dI/I/dV(V)V(V) shows both sharp peaks corresponding to a superconducting gap edge and a dip feature beyond the gap, followed by a wide maximum, which persists up to a room temperature. Shape of the temperature dependence of the {\it c}-axis resistance does not change after the intercalation suggesting that a coupling between CuO2\rm CuO_2-bilayers has little effect on the pseudogap.Comment: 6 pages, 5 figures; presented at the Second Int Conf. New3Sc-1999 (Las Vegas, NV

    Two-dimensional arrays of low capacitance tunnel junctions: general properties, phase transitions and Hall effect

    Full text link
    We describe transport properties of two-dimensional arrays of low capacitance tunnel junctions, such as the current voltage characteristic and its dependence on external magnetic field and temperature. We discuss several experiments in which the small capacitance of the junctions plays an important role. In arrays where the junctions have a relatively large charging energy, (i.e. when they have a low capacitance) and a high normal state resistance, the low bias resistance increases with decreasing temperature and eventually at very low temperature the array becomes insulating even though the electrodes in the array are superconducting. This transition to the insulating state can be described by thermal activation. In an intermediate region where the junction resistance is of the order of the quantum resistance and the charging energy is of the order of the Josephson coupling energy, the arrays can be tuned between a superconducting and an insulating state with a magnetic field. We describe measurements of this magnetic-field-tuned superconductor insulator transition, and we show that the resistance data can be scaled over several orders of magnitude. Four arrays follow the same universal function. At the transition the transverse (Hall) resistance is found to be very small in comparison with the longitudinal resistance. However, for magnetic field values larger than the critical value.we observe a substantial Hall resistance. The Hall resistance of these arrays oscillates with the applied magnetic field. features in the magnetic field dependence of the Hall resistance can qualitatively be correlated to features in the derivative of the longitudinal resistance, similar to what is found in the quantum Hall effect.Comment: 29 pages, 16 eps figures, uses aipproc.sty and epsfig.sty, contribution to Euroschool on "Superconductivity in Networks and Mesoscopic Systems", held in Siena, Italy (8-20 september 1997

    Gain Dependence of the Noise in the Single Electron Transistor

    Full text link
    An extensive investigation of low frequency noise in single electron transistors as a function of gain is presented. Comparing the output noise with gain for a large number of bias points, it is found that the noise is dominated by external charge noise. For low gains we find an additional noise contribution which is compared to a model including resistance fluctuations. We conclude that this excess noise is not only due to resistance fluctuations. For one sample, we find a record low minimum charge noise of qn = 9*10^-6 e/sqrt(Hz) in the superconducting state and qn = 9*10^-6 e/sqrt(Hz) in the normal state at a frequency of 4.4 kHz.Comment: 10 pages, LaTex 2.09, 4 figures (epsfig

    Density of States and Energy Gap in Andreev Billiards

    Get PDF
    We present numerical results for the local density of states in semiclassical Andreev billiards. We show that the energy gap near the Fermi energy develops in a chaotic billiard. Using the same method no gap is found in similar square and circular billiards.Comment: 9 pages, 6 Postscript figure

    Observation of anisotropic effect of antiferromagnetic ordering on the superconducting gap in ErNi2B2C

    Get PDF
    The point-contact (PC) spectra of the Andreev reflection dV/dI curves of the superconducting rare-earth nickel borocarbide ErNi2B2C (Tc=11 K) have been analyzed in the "one-gap" and "two-gap" approximations using the generalized Blonder-Tinkham-Klapwijk (GBTK) model and the Beloborod'ko (BB) model allowing for the pair-breaking effect of magnetic impurities. Experimental and calculated curves have been compared not only in shape, but in magnitude as well, which provide more reliable data for determining the temperature dependence of the energy gap (or superconducting order parameter) \Delta(T). The anisotropic effect of antiferromagnetic ordering at T_N =6 K on the superconducting gap/order parameter has been determined: as the temperature is lowered, \Delta(T) decreases by 25% in the c-direction and only by 4% in the ab-plane. It is found that the pair-breaking parameter increases in the vicinity of the magnetic transitions, the increase being more pronounced in the c-direction. The efficiency of the models was tested for providing \Delta(T) data for ErNi2B2C from Andreev reflection spectra.Comment: 16 two column pages, 20 figs., will be published in Fiz. Nizk. Temp. N10, 2010; V2: added - "Acknowledgement" & "Note added in proof

    Intrinsic tunneling spectra of Bi_2(Sr_{2-x}La_x)CuO_6

    Full text link
    We have measured intrinsic-tunneling spectra of a single CuO-layer La-doped Bi_2Sr_{2-x}La_xCuO_{6+\delta} (Bi2201-La_x). Despite a difference of a factor of three in the optimal superconducting critical temperatures for Bi2201-La_{0.4} and Bi2212 (32 and 95 K, respectively) and different spectral energy scales, we find that the pseudogap vanishes at a similar characteristic temperature T*\approx 230-300K for both compounds. We find also that in Bi2201-La_x, PG humps are seen as sharp peaks and, in fact, even dominate the intrinsic spectra.Comment: Submitted to Phys. Rev. Let
    corecore