2,993 research outputs found
R&D INVESTMENT AND PRODUCTIVITY GROWTH IN U.S. AND CANADIAN FOOD MANUFACTURING
Productivity growth in the Canadian processed food industry has lagged behind that in the United States because of a relatively low rate of R&D investment. Although U.S. firms generally have a technological advantage over Canadian firms, marginal rates of return to R&D are higher in Canada.Agribusiness, Productivity Analysis,
Space shuttle food system summary, 1981-1986
All food in the Space Shuttle food system was precooked and processed so it required no refrigeration and was either ready-to-eat or could be prepared for consumption by simply adding water and/or heating. A gun-type water dispenser and a portable, suitcase-type heater were used to support this food system during the first four missions. On STS-5, new rehydratable packages were introduced along with a needle-injection water dispenser that measured the water as it was dispensed into the packages. A modular galley was developed to facilitate the meal preparation process aboard the Space Shuttle. The galley initially flew on STS-9. A personal hygiene station, a hot or cold water dispenser, a convection oven, and meal assembly areas were included in the galley
Determination of Interface Atomic Structure and Its Impact on Spin Transport Using Z-Contrast Microscopy and Density-Functional Theory
We combine Z-contrast scanning transmission electron microscopy with
density-functional-theory calculations to determine the atomic structure of the
Fe/AlGaAs interface in spin-polarized light-emitting diodes. A 44% increase in
spin-injection efficiency occurs after a low-temperature anneal, which produces
an ordered, coherent interface consisting of a single atomic plane of
alternating Fe and As atoms. First-principles transport calculations indicate
that the increase in spin-injection efficiency is due to the abruptness and
coherency of the annealed interface.Comment: 16 pages (including cover), 4 figure
A meta-analysis of rates of return to agricultural R & D: ex pede Herculem?
IFPRI has long argued that spending on agricultural research constitutes a sound investment in poverty reduction and agricultural and economic growth, through improvements in productivity. This argument is based partly on the reported evidence of high rates of return to agricultural research, typically believed to be in the range of 40–60 percent per year. Yet there continues to be controversy over whether these figures are to be believed, and over what they actually indicate. This study represents the first attempt to take a comprehensive look at all the available evidence on rates of return to investments in agricultural R&D since 1953, and the only attempt to do so in a formal statistical fashion. This report has compiled and documented the literature in ways that make it more accessible and more useful to other researchers and policymakers, as well as others interested in the evidence. The analysis reveals some systematic patterns and some sources of biases that make it easier to interpret the evidence and draw meaningful conclusions. (Excerpted from Summary by Per Pinstrup-Andersen)Development projects Evaluation., Agricultural research, Statistics., Agricultural economics and policies,
Multi-sensor Testing for Automated Rendezvous and Docking
During the past two years, many sensors have been tested in an open-loop fashion in the Marshall Space Flight Center (MSFC) Flight Robotics Laboratory (FRL) to both determine their suitability for use in Automated Rendezvous and Docking (AR&D) systems and to ensure the test facility is prepared for future multi-sensor testing. The primary focus of this work was in support of the CEV AR&D system, because the AR&D sensor technology area was identified as one of the top risks in the program. In 2006, four different sensors were tested individually or in a pair in the MSFC FRL. In 2007, four sensors, two each of two different types, were tested simultaneously. In each set of tests, the target was moved through a series of pre-planned trajectories while the sensor tracked it. In addition, a laser tracker "truth" sensor also measured the target motion. The tests demonstrated the functionality of testing four sensors simultaneously as well as the capabilities (both good and bad) of all of the different sensors tested. This paper outlines the test setup and conditions, briefly describes the facility, summarizes the earlier results of the individual sensor tests, and describes in some detail the results of the four-sensor testing. Post-test analysis includes data fusion by minimum variance estimation and sequential Kalman filtering. This Sensor Technology Project work was funded by NASA's Exploration Technology Development Program
Vascular Flora of Hooper Branch Savanna Nature Preserve, Iroquois County, Illinois
INHS Technical Report prepared for Illinois Department of Natural Resources, Division of
Natural Heritag
Modular, Reconfigurable, High-Energy Systems Stepping Stones
Modular, Reconfigurable, High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure strategically located in space to support a variety of exploration scenarios. Abundant renewable energy at lunar or L1 locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, and electric propulsion. It would also provide a power-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper presents a preliminary design concept for a 100-kWe solar-powered satellite with the capability to flight-demonstrate a variety of payload experiments and to utilize electric propulsion. State-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging make the 100-kW satellite feasible for launch on one existing launch vehicle. Higher voltage arrays and power management and distribution (PMAD) systems reduce or eliminate the need for massive power converters, and could enable direct- drive of high-voltage solar electric thrusters
Next Generation Advanced Video Guidance Sensor: Low Risk Rendezvous and Docking Sensor
The Next Generation Advanced Video Guidance Sensor (NGAVGS) is being built and tested at MSFC. This paper provides an overview of current work on the NGAVGS, a summary of the video guidance heritage, and the AVGS performance on the Orbital Express mission. This paper also provides a discussion of applications to ISS cargo delivery vehicles, CEV, and future lunar applications
Fe(I)-Mediated Reductive Cleavage and Coupling of CO_2: An Fe^(II)(μ-O,μ-CO)Fe^(II) Core
THF solutions of a new iron(I) source, [PhBP^(CH2_Cy_3)]Fe ([PhBP^(CH_2Cy_3)] = [PhBP(CH_2P(CH_2Cy)_2)_3]-), effect the reductive cleavage of CO_2 via O-atom transfer at ambient temperature. The dominant reaction pathway is bimetallic and leads to the formation of a structurally unprecedented diiron Fe^(II)(μ-O)(μ-CO)Fe^(II) core. X-ray data are also available to suggest that bimetallic reductive CO_2 coupling to generate oxalate occurs as a minor reaction pathway. These initial observations forecast a diverse reaction landscape between CO_2 and iron(I) synthons
- …
