219 research outputs found
Issues in Forest Restoration: Full Cost Accounting of the 2010 Schultz Fire
The Schultz Fire of 2010 burned just over 15,000 forested acres and caused the evacuation of hundreds of homes. Heavy floods followed the fire, resulting in extensive damage to property downstream from the charred hillsides. Nearly three years later, seasonal flooding is still a concern and residents continue to live under the threat of swift floodwaters that may carve unanticipated pathways through their sloping neighborhoods.
Official reports form city, county, state, and federal governments have listed response and mitigation costs of the fire and flood at nearly 133 million and $147 million
Rapid Multiplexed Data Acquisition: Application To Three-Dimensional Magnetic Field Measurements In A Turbulent Laboratory Plasma
Multiplexing electronics have been constructed to reduce the cost of high-speed data acquisition at the Swarthmore Spheromak Experiment (SSX) and Redmond Plasma Physics Laboratory. An application of the system is described for a three-dimensional magnetic probe array designed to resolve magnetohydrodynamic time scale and ion inertial spatial scale structure of magnetic reconnection in a laboratory plasma at SSX. Multiplexing at 10 MHz compresses 600 pick-up coil signals in the magnetic probe array into 75 digitizer channels. An external master timing system maintains synchronization of the multiplexers and digitizers. The complete system, calibrated and tested with Helmholtz, line current, and magnetofluid fields, reads out the entire 5 x 5 x 8 probe array every 800 ns with an absolute accuracy of approximately 20 G, limited mainly by bit error. (C) 2003 American Institute of Physics
Observation Of A Nonaxisymmetric Magnetohydrodynamic Self-Organized State
A nonaxisymmetric stable magnetohydrodynamic(MHD) equilibrium within a prolate cylindrical conducting boundary has been produced experimentally at Swarthmore Spheromak Experiment (SSX) [M. R. Brown et al., Phys. Plasmas6, 1717 (1999)]. It has m=1toroidal symmetry, helical distortion, and flat λ profile. Each of these observed characteristics are in agreement with the magnetically relaxed minimum magnetic energy Taylor state. The Taylor state is computed using the methods described by A. Bondeson et al. [Phys. Fluids24, 1682 (1981)] and by J. M. Finn et al. [Phys. Fluids24, 1336 (1981)] and is compared in detail to the measured internal magnetic structure. The lifetime of this nonaxisymmetric compact torus (CT) is comparable to or greater than that of the axisymmetric CTs produced at SSX; thus suggesting confinement is not degraded by its nonaxisymmetry. For both one- and two-spheromak initial state plasmas, this same equilibrium consistently emerges as the final state
Spectroscopic Measurements Of Temperature And Plasma Impurity Concentration During Magnetic Reconnection At The Swarthmore Spheromak Experiment
Electron temperature measurements during counterhelicity spheromak merging studies at the Swarthmore Spheromak Experiment (SSX) [M. R. Brown, Phys. Plasmas 6, 1717 (1999)] are presented. VUV monochromator measurements of impurity emission lines are compared with model spectra produced by the non-LTE excitation kinematics code PRISMSPECT [J. J. MacFarlane et al., in Proceedings of the Third Conference on Inertial Fusion Science and Applications (2004)] to yield the electron temperature in the plasma with 1 mu s time resolution. Average T(e) is seen to increase from 12 to 19 eV during spheromak merging. Average C III ion temperature, measured with a new ion Doppler spectrometer (IDS) [C. D. Cothran et al., Rev. Sci. Instrum. 77, 063504 (2006)], likewise rises during spheromak merging, peaking at similar to 22 eV, but a similar increase in T(i) is seen during single spheromak discharges with no merging. The VUV emission line measurements are also used to constrain the concentrations of various impurities in the SSX plasma, which are dominated by carbon, but include some oxygen and nitrogen. A burst of soft x-ray emission is seen during reconnection with a new four-channel detector (SXR). There is evidence for spectral changes in the soft x-ray emission as reconnection progresses, although our single-temperature equilibrium spectral models are not able to provide adequate fits to all the SXR data. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3099603
Action research in physical education: focusing beyond myself through cooperative learning
This paper reports on the pedagogical changes that I experienced as a teacher engaged in an action research project in which I designed and implemented an indirect, developmentally appropriate and child‐centred approach to my teaching. There have been repeated calls to expunge – or at least rationalise – the use of traditional, teacher‐led practice in physical education. Yet despite the advocacy of many leading academics there is little evidence that such a change of approach is occurring. In my role as teacher‐as‐researcher I sought to implement a new pedagogical approach, in the form of cooperative learning, and bring about a positive change in the form of enhanced pupil learning. Data collection included a reflective journal, post‐teaching reflective analysis, pupil questionnaires, student interviews, document analysis, and non‐participant observations. The research team analysed the data using inductive analysis and constant comparison. Six themes emerged from the data: teaching and learning, reflections on cooperation, performance, time, teacher change, and social interaction. The paper argues that cooperative learning allowed me to place social and academic learning goals on an even footing, which in turn placed a focus on pupils’ understanding and improvement of skills in athletics alongside their interpersonal development
Inclusive Electron-Nucleus Scattering at Large Momentum Transfer
Inclusive electron scattering is measured with 4.045 GeV incident beam energy
from C, Fe and Au targets. The measured energy transfers and angles correspond
to a kinematic range for Bjorken and momentum transfers from . When analyzed in terms of the y-scaling function the data show
for the first time an approach to scaling for values of the initial nucleon
momenta significantly greater than the nuclear matter Fermi-momentum (i.e. GeV/c).Comment: 5 pages TEX, 5 Postscript figures also available at
http://www.krl.caltech.edu/preprints/OAP.htm
A Study of the Quasi-elastic (e,e'p) Reaction on C, Fe and Au
We report the results from a systematic study of the quasi-elastic (e,e'p)
reaction on C, Fe and Au performed at Jefferson Lab. We
have measured nuclear transparency and extracted spectral functions (corrected
for radiation) over a Q range of 0.64 - 3.25 (GeV/c) for all three
nuclei. In addition we have extracted separated longitudinal and transverse
spectral functions at Q of 0.64 and 1.8 (GeV/c) for these three nuclei
(except for Au at the higher Q). The spectral functions are
compared to a number of theoretical calculations. The measured spectral
functions differ in detail but not in overall shape from most of the
theoretical models. In all three targets the measured spectral functions show
considerable excess transverse strength at Q = 0.64 (GeV/c), which is
much reduced at 1.8 (GeV/c).Comment: For JLab E91013 Collaboration, 19 pages, 20 figures, 3 table
x- and xi-scaling of the Nuclear Structure Function at Large x
Inclusive electron scattering data are presented for ^2H and Fe targets at an
incident electron energy of 4.045 GeV for a range of momentum transfers from
Q^2 = 1 to 7 (GeV/c)^2. Data were taken at Jefferson Laboratory for low values
of energy loss, corresponding to values of Bjorken x greater than or near 1.
The structure functions do not show scaling in x in this range, where inelastic
scattering is not expected to dominate the cross section. The data do show
scaling, however, in the Nachtmann variable \xi. This scaling may be the result
of Bloom Gilman duality in the nucleon structure function combined with the
Fermi motion of the nucleons in the nucleus. The resulting extension of scaling
to larger values of \xi opens up the possibility of accessing nuclear structure
functions in the high-x region at lower values of Q^2 than previously believed.Comment: RevTeX, 5 pages with 4 postscript figures, submitted to PR
Skills, strategies, sport and social responsibility : reconnecting physical education
Physical education is one of the more difficult subjects in the curriculum for generalist classroom teachers in primary schools to incorporate confidently into their teaching. In many primary schools, the generalist classroom teacher defers to a physical education specialist. This situation has both positive and negative features. In this context, this study brings together several prominent models of physical education teaching in an approach that enables the curriculum to be encountered through the interests of the children. This approach offers a generalist teacher, through appropriate professional development, a means for delivering a high-quality physical education programme, and also complements the repertoire of the specialist physical education teacher at both primary and secondary school levels.<br /
- …
