159 research outputs found
Assessment of multispectral and hyperspectral imaging systems for digitisation of a Russian icon
In a study of multispectral and hyperspectral reflectance imaging, a Round Robin Test assessed the performance of different systems for the spectral digitisation of artworks. A Russian icon, mass-produced in Moscow in 1899, was digitised by ten institutions around Europe. The image quality was assessed by observers, and the reflectance spectra at selected points were reconstructed to characterise the icon’s colourants and to obtain a quantitative estimate of accuracy. The differing spatial resolutions of the systems affected their ability to resolve fine details in the printed pattern. There was a surprisingly wide variation in the quality of imagery, caused by unwanted reflections from both glossy painted and metallic gold areas of the icon’s surface. Specular reflection also degraded the accuracy of the reconstructed reflectance spectrum in some places, indicating the importance of control over the illumination geometry. Some devices that gave excellent results for matte colour charts proved to have poor performance for this demanding test object. There is a need for adoption of standards for digitising cultural heritage objects to achieve greater consistency of system performance and image quality.This article arose out of a Short-Term Scientific Mission (STSM) conducted by Tatiana Vitorino when visiting University College London during a 2-week period in late October 2015. The research was carried out under the auspices of the European COST Action TD1201 Colour and Space in Cultural Heritage (COSCH). The project website is at http://www.cosch.info. Under the COST rules, TV received funding for travel and accommodation expenses, and all coauthors were able to claim travel expenses to attend the subsequent COSCH project meeting. No other funding was received from COSCH for labour or equipment and all work was done on a voluntary pro bono basis.info:eu-repo/semantics/publishedVersio
The effect of plant density with different row spacing on quality of the fatty acid composition and grain yield of sunflower
This research was aimed to assess the influence of density with different row spacing on sunflower crop in two different locations in southern Italy. The experiment was laid out in a randomized block design with four replicates. It involved the comparison of sunflower grown in the field on 25 m2-2), obtained by keeping a constant number of plants within the row (3 plants m-1) and varying the spacing between rows (0.4, 0.6 and 0.8 m). In the crops grown at the density of 7.5 plants m-2 (0.4 m row spacing) achene and oil yields were significantly lower as compared to the other treatments. Therefore, the mean values of the two trials did not show any statistical difference between the two densities of 3.75 and 5 plants m-2 (0.8 and 0.6 m row spacing, respectively). However, the superiority in the quality of the fatty acid composition was observed in the crops grown at lower density. Therefore, the row spacing of 0.8 m seems to be a good compromise between achene production and good acid composition of oil.Key words: Helianthus annuus L, plant distribution, plant density, achene yield, oil fatty acid composition
A Graphene Oxide-Angiogenin Theranostic Nanoplatform for the Therapeutic Targeting of Angiogenic Processes: The Effect of Copper-Supplemented Medium
Graphene oxide (GO) nanosheets with different content in the defective carbon species bound to oxygen sp3 were functionalized with the angiogenin (ANG) protein, to create a novel nanomedicine for modulating angiogenic processes in cancer therapies. The GO@ANG nanocomposite was scrutinized utilizing UV-visible and fluorescence spectroscopies. GO exhibits pro- or antiangiogenic effects, mostly attributed to the disturbance of ROS concentration, depending both on the total concentration (i.e., >100 ng/mL) as well as on the number of carbon species oxidized, that is, the C/O ratio. ANG is considered one of the most effective angiogenic factors that plays a vital role in the angiogenic process, often in a synergic role with copper ions. Based on these starting hypotheses, the GO@ANG nanotoxicity was assessed with the MTT colorimetric assay, both in the absence and in the presence of copper ions, by in vitro cellular experiments on human prostatic cancer cells (PC-3 line). Laser confocal microscopy (LSM) cell imaging evidenced an enhanced internationalization of GO@ANG than bare GO nanosheets, as well as significant changes in cell cytoskeleton organization and mitochondrial staining compared to the cell treatments with free ANG
Mpeg-plga nanoparticles labelled with loaded or conjugated rhodamine-b for potential nose-to-brain delivery
Nowdays, neurodegenerative diseases represent a great challenge from both the therapeutic and diagnostic points of view. Indeed, several physiological barriers of the body, including the blood brain barrier (BBB), nasal, dermal, and intestinal barriers, interpose between the development of new drugs and their effective administration to reach the target organ or target cells at therapeutic concentrations. Currently, the nose-to-brain delivery with nanoformulations specifically designed for intranasal administration is a strategy widely investigated with the goal to reach the brain while bypassing the BBB. To produce nanosystems suitable to study both in vitro and/or in vivo cells trafficking for potential nose-to-brain delivery route, we prepared and characterized two types of fluorescent poly(ethylene glycol)-methyl-ether-block-poly(lactide-co-glycolide) (PLGA\u2013PEG) nanoparticles (PNPs), i.e., Rhodamine B (RhB) dye loaded-and grafted-PNPs, respectively. The latter were produced by blending into the PLGA\u2013PEG matrix a RhB-labeled polyaspartamide/polylactide graft copolymer to ensure a stable fluorescence during the time of analysis. Photon correlation spectroscopy (PCS), UV-visible (UV-vis) spectroscopies, differential scanning calorimetry (DSC), atomic force microscopy (AFM) were used to characterize the RhB-loaded and RhB-grafted PNPs. To assess their potential use for brain targeting, cytotoxicity tests were carried out on olfactory ensheathing cells (OECs) and neuron-like differentiated PC12 cells. Both PNP types showed mean sizes suitable for nose-to-brain delivery (<200 nm, PDI < 0.3) and were not cytotoxic toward OECs in the concentration range tested, while a reduction in the viability on PC12 cells was found when higher concentrations of nanomedicines were used. Both the RhB-labelled NPs are suitable drug carrier models for exploring cellular trafficking in nose-to-brain delivery for short-time or long-term studies
- …
