66,654 research outputs found
Driver steering dynamics measured in car simulator under a range of visibility and roadmaking conditions
A simulation experiment was conducted to determine the effect of reduced visibility on driver lateral (steering) control. The simulator included a real car cab and a single lane road image projected on a screen six feet in front of the driver. Simulated equations of motion controlled apparent car lane position in response to driver steering actions, wind gusts, and road curvature. Six drivers experienced a range of visibility conditions at various speeds with assorted roadmaking configurations (mark and gap lengths). Driver describing functions were measured and detailed parametric model fits were determined. A pursuit model employing a road curvature feedforward was very effective in explaining driver behavior in following randomly curving roads. Sampled-data concepts were also effective in explaining the combined effects of reduced visibility and intermittent road markings on the driver's dynamic time delay. The results indicate the relative importance of various perceptual variables as the visual input to the driver's steering control process is changed
A theory of human error
Human errors tend to be treated in terms of clinical and anecdotal descriptions, from which remedial measures are difficult to derive. Correction of the sources of human error requires an attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A comprehensive analytical theory of the cause-effect relationships governing propagation of human error is indispensable to a reconstruction of the underlying and contributing causes. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation, maritime, automotive, and process control operations is highlighted. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error
Liquid crystal director fluctuations and surface anchoring by molecular simulation
We propose a simple and reliable method to measure the liquid crystal surface
anchoring strength by molecular simulation. The method is based on the
measurement of the long-range fluctuation modes of the director in confined
geometry. As an example, molecular simulations of a liquid crystal in slab
geometry between parallel walls with homeotropic anchoring have been carried
out using the Monte Carlo technique. By studying different slab thicknesses, we
are able to calculate separately the position of the elastic boundary
condition, and the extrapolation length
Visualizing Basic Nuclear Reactions
There are few instructional tools available to teach basic nuclear reactions to beginning students. The activity described in this paper can be used to help students visualize and write basic nuclear reactions such as alpha, beta, and positron decay, as well as electron capture. These reactions are represented using the technology of thermochromic paints, which either change color or turn colorless depending upon the temperature. By using a special thermochromic paint that turns colorless upon heating, students are able to visualize nuclear interactions. For instance, when positron decay occurs, the object depicting a proton will decay into a neutron by the application of heat. In order to avoid confusion, the heating instrument is referred to as a time gun. This paper includes the details of preparing and incorporating the activity into the classroom environment
Vacuum polarization near cosmic string in RS2 brane world
Gravitational field of cosmic strings in theories with extra spatial
dimensions must differ significantly from that in the Einstein's theory. This
means that all gravity induced properties of cosmic strings need to be revised
too. Here we consider the effect of vacuum polarization outside a straight
infinitely thin cosmic string embedded in a RS2 brane world. Perturbation
technique combined with the method of dimensional regularization is used to
calculate for a massless scalar field.Comment: 8 pages, RevTeX
Waveforms for Gravitational Radiation from Cosmic String Loops
We obtain general formulae for the plus- and cross- polarized waveforms of
gravitational radiation emitted by a cosmic string loop in transverse,
traceless (synchronous, harmonic) gauge. These equations are then specialized
to the case of piecewise linear loops, and it is shown that the general
waveform for such a loop is a piecewise linear function. We give several simple
examples of the waveforms from such loops. We also discuss the relation between
the gravitational radiation by a smooth loop and by a piecewise linear
approximation to it.Comment: 16 pages, 6 figures, Revte
- …
