7,482 research outputs found

    Fluorides, orthodontics and demineralization: a systematic review

    Get PDF
    Objectives: To evaluate the effectiveness of fluoride in preventing white spot lesion (WSL) demineralization during orthodontic treatment and compare all modes of fluoride delivery. Data sources: The search strategy for the review was carried out according to the standard Cochrane systematic review methodology. The following databases were searched for RCTs or CCTs: Cochrane Clinical Trials Register, Cochrane Oral Health Group Specialized Trials Register, MEDLINE and EMBASE. Inclusion and exclusion criteria were applied when considering studies to be included. Authors of trials were contacted for further data. Data selection: The primary outcome of the review was the presence or absence of WSL by patient at the end of treatment. Secondary outcomes included any quantitative assessment of enamel mineral loss or lesion depth. Data extraction: Six reviewers independently, in duplicate, extracted data, including an assessment of the methodological quality of each trial. Data synthesis: Fifteen trials provided data for this review, although none fulfilled all the methodological quality assessment criteria. One study found that a daily NaF mouthrinse reduced the severity of demineralization surrounding an orthodontic appliance (lesion depth difference –70.0 µm; 95% CI –118.2 to –21.8 µm). One study found that use of a glass ionomer cement (GIC) for bracket bonding reduced the prevalence of WSL (Peto OR 0.35; 95% CI 0.15–0.84) compared with a composite resin. None of the studies fulfilled all of the methodological quality assessment criteria. Conclusions: There is some evidence that the use of a daily NaF mouthrinse or a GIC for bonding brackets might reduce the occurrence and severity of WSL during orthodontic treatment. More high quality, clinical research is required into the different modes of delivering fluoride to the orthodontic patient

    Counting approximately-shortest paths in directed acyclic graphs

    Full text link
    Given a directed acyclic graph with positive edge-weights, two vertices s and t, and a threshold-weight L, we present a fully-polynomial time approximation-scheme for the problem of counting the s-t paths of length at most L. We extend the algorithm for the case of two (or more) instances of the same problem. That is, given two graphs that have the same vertices and edges and differ only in edge-weights, and given two threshold-weights L_1 and L_2, we show how to approximately count the s-t paths that have length at most L_1 in the first graph and length at most L_2 in the second graph. We believe that our algorithms should find application in counting approximate solutions of related optimization problems, where finding an (optimum) solution can be reduced to the computation of a shortest path in a purpose-built auxiliary graph

    Free-induction-decay magnetometer based on a microfabricated Cs vapor cell

    Get PDF
    We describe an optically pumped Cs magnetometer containing a 1.5 mm thick microfabricated vapor cell with nitrogen buffer gas operating in a free-induction-decay (FID) configuration. This allows us to monitor the free Larmor precession of the spin coherent Cs atoms by separating the pump and probe phases in the time domain. A single light pulse can sufficiently polarize the atomic sample however, synchronous modulation of the light field actively drives the precession and maximizes the induced spin coherence. Both amplitude and frequency modulation have been implemented with noise floors of 3 pT / √ Hz and 16 pT / √ Hz respectively within the Nyquist limited bandwidth of 500 Hz

    Multi-GeV Electron Generation Using Texas Petawatt Laser

    Get PDF
    We present simulation results and experimental setup for multi-GeV electron generation by a laser plasma wake field accelerator (LWFA) driven by the Texas Petawatt (TPW) laser. Simulations show that, in plasma of density n(e) = 2 - 4 x cm(-3), the TPW laser pulse (1.1 PW, 170 fs) can self-guide over 5 Rayleigh ranges, while electrons self-injected into the LWFA can accelerate up to 7 GeV. Optical diagnostic methods employed to observe the laser beam self-guiding, electron trapping and plasma bubble formation and evolution are discussed. Electron beam diagnostics, including optical transition radiation (OTR) and electron gamma ray shower (EGS) generation, are discussed as well.Physic

    The celebrity entrepreneur on television: profile, politics and power

    Get PDF
    This article examines the rise of the ‘celebrity entrepreneur’ on television through the emergence of the ‘business entertainment format’ and considers the ways in which regular television exposure can be converted into political influence. Within television studies there has been a preoccupation in recent years with how lifestyle and reality formats work to transform ‘ordinary’ people into celebrities. As a result, the contribution of vocationally skilled business professionals to factual entertainment programming has gone almost unnoticed. This article draws on interviews with key media industry professionals and begins by looking at the construction of entrepreneurs as different types of television personalities and how discourses of work, skill and knowledge function in business shows. It then outlines how entrepreneurs can utilize their newly acquired televisual skills to cultivate a wider media profile and secure various forms of political access and influence. Integral to this is the centrality of public relations and media management agencies in shaping media discourses and developing the individual as a ‘brand identity’ that can be used to endorse a range of products or ideas. This has led to policy makers and politicians attempting to mobilize the media profile of celebrity entrepreneurs to reach out and connect with the public on business and enterprise-related issues

    Exponential Time Complexity of Weighted Counting of Independent Sets

    Full text link
    We consider weighted counting of independent sets using a rational weight x: Given a graph with n vertices, count its independent sets such that each set of size k contributes x^k. This is equivalent to computation of the partition function of the lattice gas with hard-core self-repulsion and hard-core pair interaction. We show the following conditional lower bounds: If counting the satisfying assignments of a 3-CNF formula in n variables (#3SAT) needs time 2^{\Omega(n)} (i.e. there is a c>0 such that no algorithm can solve #3SAT in time 2^{cn}), counting the independent sets of size n/3 of an n-vertex graph needs time 2^{\Omega(n)} and weighted counting of independent sets needs time 2^{\Omega(n/log^3 n)} for all rational weights x\neq 0. We have two technical ingredients: The first is a reduction from 3SAT to independent sets that preserves the number of solutions and increases the instance size only by a constant factor. Second, we devise a combination of vertex cloning and path addition. This graph transformation allows us to adapt a recent technique by Dell, Husfeldt, and Wahlen which enables interpolation by a family of reductions, each of which increases the instance size only polylogarithmically.Comment: Introduction revised, differences between versions of counting independent sets stated more precisely, minor improvements. 14 page
    corecore