5,566 research outputs found
Crop yield literature review for AgRISTARS crops: Corn, soybeans, wheat, barley, sorghum, rice, cotton, and sunflowers
There are no author-identified significant results in this report
Two-stage fan. 3: Data and performance with rotor tip casing treatment, uniform and distorted inlet flows
A two stage fan with a 1st-stage rotor design tip speed of 1450 ft/sec, a design pressure ratio of 2.8, and corrected flow of 184.2 lbm/sec was tested with axial skewed slots in the casings over the tips of both rotors. The variable stagger stators were set in the nominal positions. Casing treatment improved stall margin by nine percentage points at 70 percent speed but decreased stall margin, efficiency, and flow by small amounts at design speed. Treatment improved first stage performance at low speed only and decreased second stage performance at all operating conditions. Casing treatment did not affect the stall line with tip radially distorted flow but improved stall margin with circumferentially distorted flow. Casing treatment increased the attenuation for both types of inlet flow distortion
Subsystem Pseudo-pure States
A critical step in experimental quantum information processing (QIP) is to
implement control of quantum systems protected against decoherence via
informational encodings, such as quantum error correcting codes, noiseless
subsystems and decoherence free subspaces. These encodings lead to the promise
of fault tolerant QIP, but they come at the expense of resource overheads.
Part of the challenge in studying control over multiple logical qubits, is
that QIP test-beds have not had sufficient resources to analyze encodings
beyond the simplest ones. The most relevant resources are the number of
available qubits and the cost to initialize and control them. Here we
demonstrate an encoding of logical information that permits the control over
multiple logical qubits without full initialization, an issue that is
particularly challenging in liquid state NMR. The method of subsystem
pseudo-pure state will allow the study of decoherence control schemes on up to
6 logical qubits using liquid state NMR implementations.Comment: 9 pages, 1 Figur
Laboratory measurements and theoretical calculations of O_2 A band electric quadrupole transitions
Frequency-stabilized cavity ring-down spectroscopy was utilized to measure electric quadrupole transitions within the ^(16)O_2 A band, b^1Σ^+_g ← X^3Σ^-_g(0,0). We report quantitative measurements (relative uncertainties in intensity measurements from 4.4% to 11%) of nine ultraweak transitions in the ^NO, ^PO, ^RS, and ^TS branches with line intensities ranging from 3×10^(−30) to 2×10^(−29) cm molec.^(−1). A thorough discussion of relevant noise sources and uncertainties in this experiment and other cw-cavity ring-down spectrometers is given. For short-term averaging (t<100 s), we estimate a noise-equivalent absorption of 2.5×10^(−10) cm^(−1) Hz^(−1/2). The detection limit was reduced further by co-adding up to 100 spectra to yield a minimum detectable absorption coefficient equal to 1.8×10^(−11) cm^(−1), corresponding to a line intensity of ~2.5×10^(−31) cm molec.^(−1). We discuss calculations of electric quadrupole line positions based on a simultaneous fit of the ground and upper electronic state energies which have uncertainties <3 MHz, and we present calculations of electric quadrupole matrix elements and line intensities. The electric quadrupole line intensity calculations and measurements agreed on average to 5%, which is comparable to our average experimental uncertainty. The calculated electric quadrupole band intensity was 1.8(1)×10^(−27) cm molec.−1 which is equal to only ~8×10^(−6) of the magnetic dipole band intensity
Single Color Centers Implanted in Diamond Nanostructures
The development of materials processing techniques for optical diamond
nanostructures containing a single color center is an important problem in
quantum science and technology. In this work, we present the combination of ion
implantation and top-down diamond nanofabrication in two scenarios: diamond
nanopillars and diamond nanowires. The first device consists of a 'shallow'
implant (~20nm) to generate Nitrogen-vacancy (NV) color centers near the top
surface of the diamond crystal. Individual NV centers are then isolated
mechanically by dry etching a regular array of nanopillars in the diamond
surface. Photon anti-bunching measurements indicate that a high yield (>10%) of
the devices contain a single NV center. The second device demonstrates 'deep'
(~1\mu m) implantation of individual NV centers into pre-fabricated diamond
nanowire. The high single photon flux of the nanowire geometry, combined with
the low background fluorescence of the ultrapure diamond, allows us to sustain
strong photon anti-bunching even at high pump powers.Comment: 20 pages, 7 figure
Principles of Control for Decoherence-Free Subsystems
Decoherence-Free Subsystems (DFS) are a powerful means of protecting quantum
information against noise with known symmetry properties. Although Hamiltonians
theoretically exist that can implement a universal set of logic gates on DFS
encoded qubits without ever leaving the protected subsystem, the natural
Hamiltonians that are available in specific implementations do not necessarily
have this property. Here we describe some of the principles that can be used in
such cases to operate on encoded qubits without losing the protection offered
by the DFS. In particular, we show how dynamical decoupling can be used to
control decoherence during the unavoidable excursions outside of the DFS. By
means of cumulant expansions, we show how the fidelity of quantum gates
implemented by this method on a simple two-physical-qubit DFS depends on the
correlation time of the noise responsible for decoherence. We further show by
means of numerical simulations how our previously introduced "strongly
modulating pulses" for NMR quantum information processing can permit
high-fidelity operations on multiple DFS encoded qubits in practice, provided
that the rate at which the system can be modulated is fast compared to the
correlation time of the noise. The principles thereby illustrated are expected
to be broadly applicable to many implementations of quantum information
processors based on DFS encoded qubits.Comment: 12 pages, 7 figure
Empathic forecasting: How do we predict other people's feelings?
When making affective forecasts, people commit the impact bias. They overestimate the impact an emotional event has on their affective experience. In three studies we show that people also commit the impact bias when making empathic forecasts, affective forecasts for someone else. They overestimate the impact an emotional event has on someone else's affective experience (Study 1), they do so for friends and strangers (Study 2), and they do so when other sources of information are available (Study 3). Empathic forecasting accuracy, the correlation between one person's empathic forecast and another person's actual affective experience, was lower than between-person forecasting correspondence, the correlation between one person's empathic forecast and another person's affective forecast. Empathic forecasts do not capture other people's actual experience very well but are similar to what other people forecast for themselves. This may enhance understanding between people
Recommended from our members
Objective determination of the extratropical transition of tropical cyclones in the Northern Hemisphere
Extratropical transition (ET) has eluded objective identification since the realisation of its existence in the 1970s. Recent advances in numerical, computational models have provided data of higher resolution than previously available. In conjunction with this, an objective characterisation of the structure of a storm has now become widely accepted in the literature. Here we present a method of combining these two advances to provide an objective method for defining ET. The approach involves applying K-means clustering to isolate different life-cycle stages of cyclones and then analysing the progression through these stages. This methodology is then tested by applying it to five recent years from the European Centre of Medium-Range Weather Forecasting operational analyses. It is found that this method is able to determine the general characteristics for ET in the Northern Hemisphere. Between 2008 and 2012, 54% (±7, 32 of 59) of Northern Hemisphere tropical storms are estimated to undergo ET. There is great variability across basins and time of year. To fully capture all the instances of ET is necessary to introduce and characterise multiple pathways through transition. Only one of the three transition types needed has been previously well-studied. A brief description of the alternate types of transitions is given, along with illustrative storms, to assist with further stud
- …
