5,717 research outputs found
A novel method of supplying nutrients permits predictable shoot growth and root: shoot ratios of pre-transplant bedding plants
BACKGROUND AND AIMS: Growth of bedding plants, in small peat plugs, relies on nutrients in the irrigation solution. The object of the study was to find a way of modifying the nutrient supply so that good-quality seedlings can be grown rapidly and yet have the high root : shoot ratios essential for efficient transplanting.
METHODS: A new procedure was devised in which the concentrations of nutrients in the irrigation solution were modified during growth according to changing plant demand, instead of maintaining the same concentrations throughout growth. The new procedure depends on published algorithms for the dependence of growth rate and optimal plant nutrient concentrations on shoot dry weight Ws (g m–2), and on measuring evapotranspiration rates and shoot dry weights at weekly intervals. Pansy, Viola tricola ‘Universal plus yellow’ and petunia, Petunia hybrida ‘Multiflora light salmon vein’ were grown in four independent experiments with the expected optimum nutrient concentration and fractions of the optimum. Root and shoot weights were measured during growth.
KEY RESULTS: For each level of nutrient supply Ws increased with time (t) in days, according to the equation {Delta}Ws/{Delta}t=K2Ws/(100+Ws) in which the growth rate coefficient (K2) remained approximately constant throughout growth. The value of K2 for the optimum treatment was defined by incoming radiation and temperature. The value of K2 for each sub-optimum treatment relative to that for the optimum treatment was logarithmically related to the sub-optimal nutrient supply. Provided the aerial environment was optimal, Rsb/Ro{approx}Wo/Wsb where R is the root : shoot ratio, W is the shoot dry weight, and sb and o indicate sub-optimum and optimum nutrient supplies, respectively. Sub-optimal nutrient concentrations also depressed shoot growth without appreciably affecting root growth when the aerial environment was non-limiting.
CONCLUSION: The new procedure can predict the effects of nutrient supply, incoming radiation and temperature on the time course of shoot growth and the root : shoot ratio for a range of growing conditions
Regulating Scotland's social landlords: localised resistance to technologies of performance management
Influenced by Foucault's later work on governmentality, this paper explores the regulation of social landlords as a 'technology of performance' concerned with governing the conduct of dispersed welfare agencies and the professionals within them. This is a mode of power that is both voluntary and coercive; it seeks to realise its ambitions not through direct acts of intervention, but by promoting the responsible self-governance of autonomous subjects. Through an analysis of the regulatory framework for social landlords in Scotland, this paper highlights the creation of a performance culture that seeks to mobilise housing organisations to reconcile their local management systems and service provision to external standards, whilst simultaneously wielding punitive interventions for non-compliance. However, housing professionals are not passive in all of this, and indeed, actively challenged and resisted these top-down attempts to govern them at arm's-length
Quantum Information Processing with Ferroelectrically Coupled Quantum Dots
I describe a proposal to construct a quantum information processor using
ferroelectrically coupled Ge/Si quantum dots. The spin of single electrons form
the fundamental qubits. Small (<10 nm diameter) Ge quantum dots are optically
excited to create spin polarized electrons in Si. The static polarization of an
epitaxial ferroelectric thin film confines electrons laterally in the
semiconductor; spin interactions between nearest neighbor electrons are
mediated by the nonlinear process of optical rectification. Single qubit
operations are achieved through "g-factor engineering" in the Ge/Si structures;
spin-spin interactions occur through Heisenberg exchange, controlled by
ferroelectric gates. A method for reading out the final state, while required
for quantum computing, is not described; electronic approaches involving single
electron transistors may prove fruitful in satisfying this requirement.Comment: 10 pages, 3 figure
Dichotomy in the Dynamical Status of Massive Cores in Orion
To study the evolution of high mass cores, we have searched for evidence of
collapse motions in a large sample of starless cores in the Orion molecular
cloud. We used the Caltech Submillimeter Observatory telescope to obtain
spectra of the optically thin (\H13CO+) and optically thick (\HCO+) high
density tracer molecules in 27 cores with masses 1 \Ms. The red- and
blue-asymmetries seen in the line profiles of the optically thick line with
respect to the optically thin line indicate that 2/3 of these cores are not
static. We detect evidence for infall (inward motions) in 9 cores and outward
motions for 10 cores, suggesting a dichotomy in the kinematic state of the
non-static cores in this sample. Our results provide an important observational
constraint on the fraction of collapsing (inward motions) versus non-collapsing
(re-expanding) cores for comparison with model simulations.Comment: 9 pages, 2 Figures. To appear in ApJ(Letters
Post-Foucauldian governmentality: what does it offer critical social policy analysis?
This article considers the theoretical perspective of post-Foucauldian governmentality, especially the insights and challenges it poses for applied researchers within the critical social policy tradition. The article firstly examines the analytical strengths of this approach to understanding power and rule in contemporary society, before moving on to consider its limitations for social policy. It concludes by arguing that these insights can be retained, and some of the weaknesses overcome, by adopting a ‘realist governmentality’ approach (Stenson 2005, 2008). This advocates combining traditional discursive analysis with more ethnographic methods in order to render visible the concrete activity of governing, and unravel the messiness, complexity and unintended consequences involved in the struggles around subjectivity
The paradox of tenant empowerment: regulatory and liberatory possibilities
Tenant empowerment has traditionally been regarded as a means of realising democratic ideals: a quantitative increase in influence and control, which thereby enables "subjects" to acquire the fundamental properties of "citizens". By contrast governmentality, as derived from the work of Michel Foucault, offers a more critical appraisal of the concept of empowerment by highlighting how it is itself a mode of subjection and a means of regulating human conduct towards particular ends. Drawing on particular data about how housing governance has changed in Glasgow following its 2003 stock transfer, this paper adopts the insights of governmentality to illustrate how the political ambition of "community ownership" has been realized through the mobilization and shaping of active tenant involvement in the local decision making process. In addition, it also traces the tensions and conflict inherent in the reconfiguration of power relations post-transfer for "subjects" do not necessarily conform to the plans of those that seek to govern them
The State of the Circumstellar Medium Surrounding Gamma-Ray Burst Sources and its Effect on the Afterglow Appearance
We present a numerical investigation of the contribution of the presupernova
ejecta of Wolf-Rayet stars to the environment surrounding gamma-ray bursts
(GRBs), and describe how this external matter can affect the observable
afterglow characteristics. An implicit hydrodynamic calculation for massive
stellar evolution is used here to provide the inner boundary conditions for an
explicit hydrodynamical code to model the circumstellar gas dynamics. The
resulting properties of the circumstellar medium are then used to calculate the
deceleration of a relativistic, gas-dynamic jet and the corresponding afterglow
light curve produced as the shock wave propagates through the shocked-wind
medium. We find that variations in the stellar wind drive instabilities that
may produce radial filaments in the shocked-wind region. These comet-like tails
of clumps could give rise to strong temporal variations in the early afterglow
lightcurve. Afterglows may be expected to differ widely among themselves,
depending on the angular anisotropy of the jet and the properties of the
stellar progenitor; a wide diversity of behaviors may be the rule, rather than
the exception.Comment: 17 pages, 7 figures, ApJ in pres
Distribution and Kinematics of O VI in the Galactic Halo
FUSE spectra of 100 extragalactic objects are analyzed to obtain measures of
O VI absorption along paths through the Milky Way thick disk/halo. Strong O VI
absorption over the approximate velocity range from -100 to 100 km/s reveals a
widespread but highly irregular distribution of thick disk O VI, implying the
existence of substantial amounts of hot gas with T ~ 3x10^5 K in the Milky Way
halo. Large irregularities in the distribution of the absorbing gas are found
to be similar over angular scales extending from less than one to 180 degrees,
indicating a considerable amount of small and large scale structure in the gas.
The overall distribution of Galactic O VI is not well described by a
symmetrical plane-parallel layer of patchy O VI absorption. The simplest
departure from such a model that provides a reasonable fit to the observations
is a plane-parallel patchy absorbing layer with a scale height of 2.3 kpc, and
a 0.25 dex excess of O VI in the northern Galactic polar region. The O VI
absorption has a Doppler parameter b = 30 to 99 km/s, with an average value of
60 km/s . Thermal broadening alone cannot explain the large observed profile
widths. The average O VI absorption velocities toward high latitude objects
range from -46 to 82 km/s, with a sample average of 0 km/s and a standard
deviation of 21 km/s. O VI associated with the thick disk moves both toward and
away from the plane with roughly equal frequency. A combination of models
involving the radiative cooling of hot fountain gas, the cooling of supernova
bubbles in the halo, and the turbulent mixing of warm and hot halo gases is
required to explain the presence of O VI and other highly ionized atoms found
in the halo. (abbreviated)Comment: 70 pages, single-spaced, PDF format. Bound copies of this manuscript
and two accompanying articles are available upon request. Submitted to ApJ
Synthesized grain size distribution in the interstellar medium
We examine a synthetic way of constructing the grain size distribution in the
interstellar medium (ISM). First we formulate a synthetic grain size
distribution composed of three grain size distributions processed with the
following mechanisms that govern the grain size distribution in the Milky Way:
(i) grain growth by accretion and coagulation in dense clouds, (ii) supernova
shock destruction by sputtering in diffuse ISM, and (iii) shattering driven by
turbulence in diffuse ISM. Then, we examine if the observational grain size
distribution in the Milky Way (called MRN) is successfully synthesized or not.
We find that the three components actually synthesize the MRN grain size
distribution in the sense that the deficiency of small grains by (i) and (ii)
is compensated by the production of small grains by (iii). The fraction of each
{contribution} to the total grain processing of (i), (ii), and (iii) (i.e., the
relative importance of the three {contributions} to all grain processing
mechanisms) is 30-50%, 20-40%, and 10-40%, respectively. We also show that the
Milky Way extinction curve is reproduced with the synthetic grain size
distributions.Comment: 10 pages, 6 figures, accepted for publication in Earth, Planets, and
Spac
- …
