40 research outputs found

    Genetic dissection reveals diabetes loci proximal to the gimap5 lymphopenia gene

    Get PDF
    rats are protected from type 1 diabetes (T1D) by 34 Mb of F344 DNA introgressed proximal to the gimap5 lymphopenia gene. To dissect the genetic factor(s) that confer protection from T1D in the DRF. f/f rat line, DRF. f/f rats were crossed to inbred BBDR or DR. lyp/lyp rats to generate congenic sublines that were genotyped and monitored for T1D, and positional candidate genes were sequenced. All (100%) DR. f/f congenic sublines further refined the RNO4 region 1 interval to ϳ670 kb and region 2 to the 340 kb proximal to gimap5. All congenic DRF. f/f sublines were prone to low-grade pancreatic mononuclear cell infiltration around ducts and vessels, but Ͻ20% of islets in nondiabetic rats showed islet infiltration. Coding sequence analysis revealed TCR V␤ 8E, 12, and 13 as candidate genes in region 1 and znf467 and atp6v0e2 as candidate genes in region 2. Our results show that spontaneous T1D is controlled by at least two genetic loci 7 Mb apart on rat chromosome 4. type 1 diabetes; BB rat; T cell receptor; autoimmune CHARACTERISTICS OF TYPE 1 DIABETES (T1D) in both human and the BioBreeding spontaneously diabetes-prone (BBDP) rat include polyuria, hyperglycemia, ketoacidosis, insulitis, and insulin dependency for life. As in human T1D, islets are infiltrated by mononuclear cells at the time of onset with rapid hyperglycemia due to a complete loss of islet ␤-cells (32). The genetic etiology of human T1D remains complex and although the major histocompatibility complex (MHC) (HLA DQ) on chromosome 6 accounts for ϳ40% of T1D risk, the number of non-HLA genetic factors is increasing steadily (2, 7). The BB rat offers a powerful model to dissect both genetic contributions and mechanisms by which immunemediated beta cell killing induces T1D (3, 4, 15, 17-21, 27, 28, 46). As in humans, the major genetic determinant of susceptibility in the BB rat is the MHC (Iddm1) on rat chromosome (RNO) 20. The class II MHC locus RT1B/D. u/u ), an ortholog of human HLA DQ (9), is necessary but not sufficient for T1D in the BBDP rat and other RT1. u/u -related rat strains with spontaneous (24, 47) or induced T1D (8, 43). In BBDP, a null mutation in the gimap5 gene (lyp; Iddm2) on RNO4 (14, 27) causes lymphopenia and is tightly linked to spontaneous T1D development. The DR. lyp/lyp rat with 2 Mb of BBDP DNA encompassing gimap5 introgressed into the genome of related BBDR rats (BioBreeding resistant to spontaneous T1D) are also 100% lymphopenic and 100% spontaneously diabetic (11). With complete T1D penetrance and tight regulation of onset, the congenic DR. lyp/lyp rat line offers distinct advantages in identification of genes responsible for disease progression. It is possible to induce T1D in BBDR rats (32) and related RT1 u/u rats (8) by administration of polyinosinic: polycytidylic acid (poly I:C, an activator of innate immunity), the T reg depleting cytotoxic DS4.23 anti-ART2.1 (formerly RT6) monoclonal antibody or by viral infection (34). This indicates that the BBDR has an underlying genetic susceptibility to T1D. In crosses between WF and either BBDP or BBDR rats, a quantitative trait locus (QTL) important for induced T1D (Iddm14, previously designated Iddm4) was mapped to RNO4 (6, Interestingly, F344 DNA introgressed between D4Rat253 and D4Rhw6 into the congenic DR. lyp/lyp genetic background resulted in a lymphopenic but nondiabetic rat (designated DRF. f/f ) (11). Protection from T1D in the DRF. f/f congenic rat line led us to conclude that spontaneous T1D in the BB rat is controlled, in part, by a diabetogenic factor(s) independent of the gimap5 mutation (76.84 Mb) on RNO4. This congenic interval is encompassed within Iddm14, raising the possibility that the Iddm14 locus could be required for both spontaneous and induced T1D in the BB rat. The aim of this study was to cross the DRF. f/f rat to BBDR and DR. lyp/lyp rats and produce recombinant sublines that could be assessed for both lymphopenia and diabetes and to estimate the number of independent genes on RNO4 that control spontaneous T1D

    Flavonoids in prevention of diseases with respect to modulation of Ca-pump function

    Get PDF
    Flavonoids, natural phenolic compounds, are known as agents with strong antioxidant properties. In many diseases associated with oxidative/nitrosative stress and aging they provide multiple biological health benefits. Ca2+-ATPases belong to the main calcium regulating proteins involved in the balance of calcium homeostasis, which is impaired in oxidative/nitrosative stress and related diseases or aging. The mechanisms of Ca2+-ATPases dysfunction are discussed, focusing on cystein oxidation and tyrosine nitration. Flavonoids act not only as antioxidants but are also able to bind directly to Ca2+-ATPases, thus changing their conformation, which results in modulation of enzyme activity

    Mechanisms underlying increases in SR Ca<sup>2+</sup>-ATPase activity after exercise in rat skeletal muscle

    Full text link
    Prolonged exercise followed by a brief period of reduced activity has been shown to result in an overshoot in maximal sarcoplasmic reticulum (SR) Ca2+-ATPase activity [maximal velocity ( Vmax)] in rat locomoter muscles (Ferrington DA, Reijneveld JC, Bär PR, and Bigelow DJ. Biochim Biophys Acta 1279: 203–213, 1996). To investigate the functional significance and underlying mechanisms for the increase in Vmax, we analyzed Ca2+-ATPase activity and Ca2+uptake in SR vesicles from the fast rat gastrocnemius muscles after prolonged running (RUN) and after prolonged running plus 45 min of low-intensity activity (RUN+) or no activity (REC45) and compared them with controls (Con). Although no differences were observed between RUN and Con, both Vmaxand Ca2+uptake were higher ( P &lt; 0.05) by 43 and 63%, respectively, in RUN+ and by 35 and 34%, respectively, in REC45. The increase in Vmaxwas accompanied by increases ( P &lt; 0.05) in the phosphorylated enzyme intermediate measured by [γ-32P]ATP. No differences between groups for each condition were found for the fluorescent probes FITC and ( N-cyclohexyl- N1-dimethylamino-α-naphthyl)carbodiimide, competitive inhibitors of the nucleotide-binding and Ca2+-binding sites on the enzyme, respectively. Similarly, no differences for the Ca2+-ATPase were observed between groups in nitrotyrosine and phosphoserine residues, a measure of nitrosylation and phosphorylation states, respectively. Western blots indicated no changes in relative isoform content of sarcoendoplasmic reticulum (SERCA)1 and SERCA2a. It is concluded that the increase in Vmaxof the Ca2+-ATPase observed in recovery is not the result of changes in enzyme nitroslyation or phosphorylation, changes in ATP and Ca2+-binding affinity, or changes in protein content of the Ca2+-ATPase.</jats:p

    Dissociation between changes in muscle Na +

    No full text

    Muscle Na +

    No full text
    corecore