213,602 research outputs found
On-the-Fly Data Synopses: Efficient Data Exploration in the Simulation Sciences
As a consequence of ever more powerful computing hardware and increasingly precise instruments, our capacity to produce scientific data by far outpaces our ability to efficiently store and analyse it. Few of today's tools to analyse scientific data are able to handle the deluge captured by instruments or generated by supercomputers.
In many scenarios, however, it suffices to analyse a small subset of the data in detail. What scientists analysing the data consequently need are efficient means to explore the full dataset using approximate query results and to identify the subsets of interest. Once found, interesting areas can still be scrutinised using a precise, but also more time-consuming analysis. Data synopses fit the bill as they provide fast (but approximate) query execution on massive amounts of data. Generating data synopses after the data is stored, however, requires us to analyse all the data again, and is thus inefficient
What we propose is to generate the synopsis for simulation applications on-the-fly when the data is captured. Doing so typically means changing the simulation or data capturing code and is tedious and typically just a one-off solution that is not generally applicable. In contrast, our vision gives scientists a high-level language and the infrastructure needed to generate code that creates data synopses on-the-fly, as the simulation runs. In this paper we discuss the data management challenges associated with our approach</jats:p
VSR symmetries in the DKP algebra: the interplay between Dirac and Elko spinor fields
VSR symmetries are here naturally incorporated in the DKP algebra on the
spin-0 and the spin-1 DKP sectors. We show that the Elko (dark) spinor fields
structure plays an essential role on accomplishing this aim, unravelling hidden
symmetries on the bosonic DKP fields under the action of discrete symmetries.Comment: 17 page
Dark Spinors Hawking Radiation in String Theory Black Holes
The Hawking radiation spectrum of Kerr-Sen axion-dilaton black holes is
derived, in the context of dark spinors tunnelling across the horizon. Since a
black hole has a well defined temperature, it should radiate in principle all
the standard model particles, similar to a black body at that temperature. We
investigate the tunnelling of mass dimension one spin-1/2 dark fermions, that
are beyond the standard model and are prime candidates to the dark matter.
Their interactions with the standard model matter and gauge fields are
suppressed by at least one power of unification scale, being restricted just to
the Higgs field and to the graviton likewise. The tunnelling method for the
emission and absorption of mass dimension one particles across the event
horizon of Kerr-Sen axion-dilaton black holes is shown here to provide further
evidence for the universality of black hole radiation, further encompassing
particles beyond the standard model.Comment: 11 pages, improved version, to appear in AHE
Studies on the synthesis of α−iodoaziridines and improved conditions for the synthesis of alkyl-α-iodoaziridines using ClMgCHI2
Computing k-Modal Embeddings of Planar Digraphs
Given a planar digraph G and a positive even integer k, an embedding of G in the plane is k-modal, if every vertex of G is incident to at most k pairs of consecutive edges with opposite orientations, i.e., the incoming and the outgoing edges at each vertex are grouped by the embedding into at most k sets of consecutive edges with the same orientation. In this paper, we study the k-Modality problem, which asks for the existence of a k-modal embedding of a planar digraph. This combinatorial problem is at the very core of a variety of constrained embedding questions for planar digraphs and flat clustered networks.
First, since the 2-Modality problem can be easily solved in linear time, we consider the general k-Modality problem for any value of k>2 and show that the problem is NP-complete for planar digraphs of maximum degree Delta <= k+3. We relate its computational complexity to that of two notions of planarity for flat clustered networks: Planar Intersection-Link and Planar NodeTrix representations. This allows us to answer in the strongest possible way an open question by Di Giacomo [https://doi.org/10.1007/978-3-319-73915-1_37], concerning the complexity of constructing planar NodeTrix representations of flat clustered networks with small clusters, and to address a research question by Angelini et al. [https://doi.org/10.7155/jgaa.00437], concerning intersection-link representations based on geometric objects that determine complex arrangements. On the positive side, we provide a simple FPT algorithm for partial 2-trees of arbitrary degree, whose running time is exponential in k and linear in the input size. Second, motivated by the recently-introduced planar L-drawings of planar digraphs [https://doi.org/10.1007/978-3-319-73915-1_36], which require the computation of a 4-modal embedding, we focus our attention on k=4. On the algorithmic side, we show a complexity dichotomy for the 4-Modality problem with respect to Delta, by providing a linear-time algorithm for planar digraphs with Delta <= 6. This algorithmic result is based on decomposing the input digraph into its blocks via BC-trees and each of these blocks into its triconnected components via SPQR-trees. In particular, we are able to show that the constraints imposed on the embedding by the rigid triconnected components can be tackled by means of a small set of reduction rules and discover that the algorithmic core of the problem lies in special instances of NAESAT, which we prove to be always NAE-satisfiable - a result of independent interest that improves on Porschen et al. [https://doi.org/10.1007/978-3-540-24605-3_14]. Finally, on the combinatorial side, we consider outerplanar digraphs and show that any such a digraph always admits a k-modal embedding with k=4 and that this value of k is best possible for the digraphs in this family
Revealing how different spinors can be: the Lounesto spinor classification
This paper aims to give a coordinate based introduction to the so-called
Lounesto spinorial classification scheme. We introduce the main ideas and
aspects of this spinorial categorization in an argumentative basis, after what
we delve into a commented account on recent results obtained from (and within)
this branch of research.Comment: brief review of the Lounesto spinor fileds classification and further
development
Ripples and Grains Segregation on Unpaved Road
Ripples or corrugations are common phenomena observed in unpaved roads in
less developed countries or regions. They cause several damages in vehicles
leading to increased maintenance and product costs. In this paper, we present a
computational study about the so-called washboard roads. Also, we study grain
segregation on unpaved roads. Our simulations have been performed by the
Discrete Element Method (DEM). In our model, the grains are regarded as soft
disks. The grains are subjected to a gravitational field and both translational
and rotational movements are allowed. The results show that wheels' of
different sizes, weights and moving with different velocities can change
corrugations amplitude and wavelength. Our results also show that some
wavelength values are related to specific wheels' speed intervals. Segregation
has been studied in roads formed by three distinct grain diameters
distribution. We observed that the phenomenon is more evident for higher grain
size dispersion
Recommended from our members
Evidence for somatic selection of natural autoantibodies.
Natural autoantibodies are primarily immunoglobulin M (IgM) antibodies that bind to a variety of self-antigens, including self-IgG. Accounting for a large proportion of the early B cell repertoire, such polyspecific autoantibodies are speculated to contribute to the homeostasis and/or competence of the primary humoral immune system. Recent studies indicate that the leukemia cells from most patients with chronic lymphocytic leukemia (CLL) also express such IgM autoantibodies. Similarly, the leukemia cells from many CLL patients react with murine monoclonal antibodies (mAbs) specific for crossreactive idiotypes (CRIs) associated with human IgM autoantibodies. In particular, leukemic cells frequently react with G6, a mAb specific for an Ig heavy chain (H chain)-associated CRI, and/or with 17.109, a mAb that defines a kappa light chain (L chain)-associated CRI. Generated against IgM rheumatoid factor (RF) paraproteins, G6 and 17.109 each recognize a major CRI that is present in many IgM RF paraproteins. Furthermore, over 90% of the IgM paraproteins found to bear both H and L chain-associated CRIs also are found to have RF activity. Molecular characterization of these CRIs demonstrates that each is a serologic marker for expression of a highly conserved Ig V gene. As such, the frequent production of IgM polyspecific autoantibodies in CLL simply may reflect the frequent use of such highly conserved autoantibody-encoding Ig V genes with little or no somatic mutation. To test this hypothesis, we generated murine transfectomas to pair the 17.109-reactive kappa L chain of SMI, a 17.109/G6-reactive CLL population, with the Ig H chain of SMI or other G6-reactive leukemia cells or tonsillar lymphocytes. Cotransfection of vectors encoding the Ig H and L chains of SMI generated transfectomas that produce IgM kappa RF autoantibodies reactive with human IgG1 and IgG4. In contrast to G6/17.109-reactive IgM kappa RF Waldenstrom's paraproteins, the SMI IgM kappa also reacts with several other self-antigens, including myoglobin, actin, and ssDNA. However, cotransfection of the SMI L chain with a vector encoding any one of 10 different G6-reactive Ig H chains generated transfectomas that produce IgM kappa antibodies without detectable polyspecific autoantibody activity. These results indicate that polyspecific antiself-reactivity of G6/17.019-reactive Ig is dependent on the somatically generated Ig third complementarity determining region. Collectively, these studies imply that selection may be responsible for the frequent expression of polyspecific autoantibodies in CLL and early B cell ontogeny
- …
