215 research outputs found
The Quadratic Coefficient of the Electron Cloud Mapping
The Electron Cloud is an undesirable physical phenomenon which might produce
single and multi-bunch instability, tune shift, increase of pressure ultimately
limiting the performance of particle accelerators. We report our results on the
analytical study of the electron dynamics.Comment: 5 pages, 7 figures, presented at ECLOUD12: Joint
INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects, La Biodola, Isola
d Elba, Italy, 5-9 June 201
Maps for Electron Clouds: Application to LHC Conditioning
In this communication we present a generalization of the map formalism,
introduced in [1] and [2], to the analysis of electron flux at the chamber wall
with particular reference to the exploration of LHC conditioning scenarios.Comment: 3 pages, 4 figure
A Nearly Minimum Redundant Correlator Interpolation Formula for Gravitational Wave Chirp Detection
An absolute lower bound on the number of templates needed to keep the fitting factor above a prescribed minimal value in correlator bank detection of (newtonian) gravitational wave chirps from unknown inspiraling compact binary sources is derived, resorting to the theory of quasi-bandlimited functions in the norm. An explicit nearly-minimum redundant cardinal-interpolation formula for the (reduced, noncoherent) correlator is introduced. Its computational burden and statistical properties are compared to those of the plain lattice of (reduced, noncoherent) correlators, for the same . Extension to post-newtonian models is outlined
Maps for electron clouds: application to LHC
In this communication we show that the cubic map formalism introduced in [1] to model electron cloud in RHIC is also reliable in the range of typical LHC parameters
Maps for electron cloud density in Large Hadron Collider dipoles
The generation of a quasistationary electron cloud inside the beam pipe through beam-induced multipacting processes has become an area of intensive study. The analyses performed so far have been based on heavy computer simulations taking into account photoelectron production, secondary emission, electron dynamics, and space charge effects, providing a detailed description of the electron-cloud evolution. Iriso and Peggs [U. Iriso and S. Peggs, Phys. Rev. ST Accel. Beams 8, 024403 (2005)] have shown that, for the typical parameters of RHIC, the bunch-to-bunch evolution of the average electron-cloud density at a point can be represented by a cubic map. Simulations based on this map formalism are orders of magnitude faster compared to those based on standard particle tracking codes. In this communication we show that the map formalism is also applicable to the case of the Large Hadron Collider (LHC), and that, in particular, it reproduces the average electron-cloud densities computed using a reference code to within ∼15% for general LHC bunch filling patterns. We also illustrate the dependence of the polynomial map coefficients on the physical parameters affecting the electron cloud (secondary emission yield, bunch charge, bunch spacing, etc.)
Simulations and Studies of Electron Beam Dynamics under Compton Back-scattering for the Compact X-ray Source ThomX
MOPWO004 - ISBN 978-3-95450-122-9International audienceIn this article are presented beam dynamics investiga- tions of a relativistic electron bunch in the compact storage ring ThomX (50 MeV), which is under construction at LAL to produce hard X-ray using Compton Back-Scattering (CBS). The effect of CBS has been implemented in a 6D tracking code. In addition to CBS, the influence of lattice non linearities and various collective effects on the flux of scattered Compton photons is investigated
Optimum Placement of Post-1PN GW Chirp Templates Made Simple at any Match Level via Tanaka-Tagoshi Coordinates
A simple recipe is given for constructing a maximally sparse regular lattice
of spin-free post-1PN gravitational wave chirp templates subject to a given
minimal match constraint, using Tanaka-Tagoshi coordinates.Comment: submitted to Phys. Rev.
Gravitational Wave Chirp Search: Economization of PN Matched Filter Bank via Cardinal Interpolation
The final inspiral phase in the evolution of a compact binary consisting of
black holes and/or neutron stars is among the most probable events that a
network of ground-based interferometric gravitational wave detectors is likely
to observe. Gravitational radiation emitted during this phase will have to be
dug out of noise by matched-filtering (correlating) the detector output with a
bank of several templates, making the computational resources required
quite demanding, though not formidable. We propose an interpolation method for
evaluating the correlation between template waveforms and the detector output
and show that the method is effective in substantially reducing the number of
templates required. Indeed, the number of templates needed could be a factor
smaller than required by the usual approach, when the minimal overlap
between the template bank and an arbitrary signal (the so-called {\it minimal
match}) is 0.97. The method is amenable to easy implementation, and the various
detector projects might benefit by adopting it to reduce the computational
costs of inspiraling neutron star and black hole binary search.Comment: scheduled for publicatin on Phys. Rev. D 6
Status of the Super-B factory Design
The SuperB international team continues to optimize the design of an
electron-positron collider, which will allow the enhanced study of the origins
of flavor physics. The project combines the best features of a linear collider
(high single-collision luminosity) and a storage-ring collider (high repetition
rate), bringing together all accelerator physics aspects to make a very high
luminosity of 10 cm sec. This asymmetric-energy collider
with a polarized electron beam will produce hundreds of millions of B-mesons at
the (4S) resonance. The present design is based on extremely low
emittance beams colliding at a large Piwinski angle to allow very low
without the need for ultra short bunches. Use of crab-waist
sextupoles will enhance the luminosity, suppressing dangerous resonances and
allowing for a higher beam-beam parameter. The project has flexible beam
parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring
for longitudinal polarization of the electron beam at the Interaction Point.
Optimized for best colliding-beam performance, the facility may also provide
high-brightness photon beams for synchrotron radiation applications
- …
