394 research outputs found
Precessional switching of thin nanomagnets: analytical study
We study analytically the precessional switching of the magnetization of a
thin macrospin. We analyze its response when subjected to an external field
along its in-plane hard axis. We derive the exact trajectories of the
magnetization. The switching versus non switching behavior is delimited by a
bifurcation trajectory, for applied fields equal to half of the effective
anisotropy field. A magnetization going through this bifurcation trajectory
passes exactly along the hard axis and exhibits a vanishing characteristic
frequency at that unstable point, which makes the trajectory noise sensitive.
Attempting to approach the related minimal cost in applied field makes the
magnetization final state unpredictable. We add finite damping in the model as
a perturbative, energy dissipation factor. For a large applied field, the
system switches several times back and forth. Several trajectories can be gone
through before the system has dissipated enough energy to converge to one
attracting equilibrium state. For some moderate fields, the system switches
only once by a relaxation dominated precessional switching. We show that the
associated switching field increases linearly with the damping parameter. The
slope scales with the square root of the effective anisotropy. Our simple
concluding expressions are useful to assess the potential application of
precessional switching in magnetic random access memories
Annealing stability of magnetic tunnel junctions based on dual MgO free layers and [Co/Ni] based thin synthetic antiferromagnet fixed system
We study the annealing stability of bottom-pinned perpendicularly magnetized
magnetic tunnel junctions based on dual MgO free layers and thin fixed systems
comprising a hard [Co/Ni] multilayer antiferromagnetically coupled to thin a Co
reference layer and a FeCoB polarizing layer. Using conventional magnetometry
and advanced broadband ferromagnetic resonance, we identify the properties of
each sub-unit of the magnetic tunnel junction and demonstrate that this
material option can ensure a satisfactory resilience to the 400C
thermal annealing needed in solid-state magnetic memory applications. The dual
MgO free layer possesses an anneal-robust 0.4 T effective anisotropy and
suffers only a minor increase of its Gilbert damping from 0.007 to 0.010 for
the toughest annealing conditions. Within the fixed system, the ferro-coupler
and texture-breaking TaFeCoB layer keeps an interlayer exchange above 0.8
mJ/m, while the Ru antiferrocoupler layer within the synthetic
antiferromagnet maintains a coupling above -0.5 mJ/m. These two strong
couplings maintain the overall functionality of the tunnel junction upon the
toughest annealing despite the gradual degradation of the thin Co layer
anisotropy that may reduce the operation margin in spin torque memory
applications. Based on these findings, we propose further optimization routes
for the next generation magnetic tunnel junctions
Offset fields in perpendicularly magnetized tunnel junctions
We study the offset fields affecting the free layer of perpendicularly
magnetized tunnel junctions. In extended films, the free layer offset field
results from interlayer exchange coupling with the reference layer through the
MgO tunnel oxide. The free layer offset field is thus accompanied with a shift
of the free layer and reference layer ferromagnetic resonance frequencies. The
shifts depend on the mutual orientation of the two magnetizations. The offset
field decreases with the resistance area product of the tunnel oxide.
Patterning the tunnel junction into an STT-MRAM disk-shaped cell changes
substantially the offset field, as the reduction of the lateral dimension comes
with the generation of stray fields by the reference and the hard layer. The
experimental offset field compares best with the spatial average of the sum of
these stray fields, thereby providing guidelines for the offset field
engineering.Comment: Special issue of J. Phys. D: Appl. Phys (2019) on STT-MRA
Exchange stiffness in ultrathin perpendicularly-magnetized CoFeB layers determined using spin wave spectroscopy
We measure the frequencies of spin waves in nm-thick perpendicularly
magnetized FeCoB systems, and model the frequencies to deduce the exchange
stiffness of this material in the ultrathin limit. For this, we embody the
layers in magnetic tunnel junctions patterned into circular nanopillars of
diameters ranging from 100 to 300 nm and we use magneto-resistance to determine
which rf-current frequencies are efficient in populating the spin wave modes.
Micromagnetic calculations indicate that the ultrathin nature of the layer and
the large wave vectors used ensure that the spin wave frequencies are
predominantly determined by the exchange stiffness, such that the number of
modes in a given frequency window can be used to estimate the exchange. For 1
nm layers the experimental data are consistent with an exchange stiffness A= 20
pJ/m, which is slightly lower that its bulk counterpart. The thickness
dependence of the exchange stiffness has strong implications for the numerous
situations that involve ultrathin films hosting strong magnetization gradients,
and the micromagnetic description thereof.Comment: 5 pages, 4 figures, submitted to PR
Dynamical influence of vortex-antivortex pairs in magnetic vortex oscillators
We study the magnetization dynamics in a nanocontact magnetic vortex
oscillators as function of temperature. Low temperature experiments reveal that
the dynamics at low and high currents differ qualitatively. At low currents, we
excite a temperature independent standard oscillation mode, consisting in the
gyrotropic motion of a free layer vortex about the nanocontact. Above a
critical current, a sudden jump of the frequency is observed, concomitant with
a substantial increase of the frequency versus current slope factor. Using
micromagnetic simulation and analytical modeling, we associate this new regime
to the creation of a vortex-antivortex pair in the pinned layer of the spin
valve. The vortex-antivortex distance depends on the Oersted field which favors
a separation, and on the exchange bias field, which favors pair merging. The
pair in the pinned layer provides an additional spin torque altering the
dynamics of the free layer vortex, which can be quantitatively accounted for by
an analytical model
Current-driven vortex oscillations in metallic nanocontacts
We present experimental evidence of sub-GHz spin-transfer oscillations in
metallic nano-contacts that are due to the translational motion of a magnetic
vortex. The vortex is shown to execute large-amplitude orbital motion outside
the contact region. Good agreement with analytical theory and micromagnetics
simulations is found.Comment: 4 pages, 3 figure
Auto-oscillation threshold, narrow spectral lines, and line jitter in spin-torque oscillators based on MgO magnetic tunnel junctions
We demonstrate spin torque induced auto-oscillation in MgO-based magnetic
tunnel junctions. At the generation threshold, we observe a strong line
narrowing down to 6 MHz at 300K and a dramatic increase in oscillator power,
yielding spectrally pure oscillations free of flicker noise. Setting the
synthetic antiferromagnet into autooscillation requires the same current
polarity as the one needed to switch the free layer magnetization. The induced
auto-oscillations are observed even at zero applied field, which is believed to
be the acoustic mode of the synthetic antiferromagnet. While the phase
coherence of the auto-oscillation is of the order of microseconds, the power
autocorrelation time is of the order of milliseconds and can be strongly
influenced by the free layer dynamics
- …
