394 research outputs found

    Precessional switching of thin nanomagnets: analytical study

    Full text link
    We study analytically the precessional switching of the magnetization of a thin macrospin. We analyze its response when subjected to an external field along its in-plane hard axis. We derive the exact trajectories of the magnetization. The switching versus non switching behavior is delimited by a bifurcation trajectory, for applied fields equal to half of the effective anisotropy field. A magnetization going through this bifurcation trajectory passes exactly along the hard axis and exhibits a vanishing characteristic frequency at that unstable point, which makes the trajectory noise sensitive. Attempting to approach the related minimal cost in applied field makes the magnetization final state unpredictable. We add finite damping in the model as a perturbative, energy dissipation factor. For a large applied field, the system switches several times back and forth. Several trajectories can be gone through before the system has dissipated enough energy to converge to one attracting equilibrium state. For some moderate fields, the system switches only once by a relaxation dominated precessional switching. We show that the associated switching field increases linearly with the damping parameter. The slope scales with the square root of the effective anisotropy. Our simple concluding expressions are useful to assess the potential application of precessional switching in magnetic random access memories

    Annealing stability of magnetic tunnel junctions based on dual MgO free layers and [Co/Ni] based thin synthetic antiferromagnet fixed system

    Full text link
    We study the annealing stability of bottom-pinned perpendicularly magnetized magnetic tunnel junctions based on dual MgO free layers and thin fixed systems comprising a hard [Co/Ni] multilayer antiferromagnetically coupled to thin a Co reference layer and a FeCoB polarizing layer. Using conventional magnetometry and advanced broadband ferromagnetic resonance, we identify the properties of each sub-unit of the magnetic tunnel junction and demonstrate that this material option can ensure a satisfactory resilience to the 400^\circC thermal annealing needed in solid-state magnetic memory applications. The dual MgO free layer possesses an anneal-robust 0.4 T effective anisotropy and suffers only a minor increase of its Gilbert damping from 0.007 to 0.010 for the toughest annealing conditions. Within the fixed system, the ferro-coupler and texture-breaking TaFeCoB layer keeps an interlayer exchange above 0.8 mJ/m2^2, while the Ru antiferrocoupler layer within the synthetic antiferromagnet maintains a coupling above -0.5 mJ/m2^2. These two strong couplings maintain the overall functionality of the tunnel junction upon the toughest annealing despite the gradual degradation of the thin Co layer anisotropy that may reduce the operation margin in spin torque memory applications. Based on these findings, we propose further optimization routes for the next generation magnetic tunnel junctions

    Offset fields in perpendicularly magnetized tunnel junctions

    Full text link
    We study the offset fields affecting the free layer of perpendicularly magnetized tunnel junctions. In extended films, the free layer offset field results from interlayer exchange coupling with the reference layer through the MgO tunnel oxide. The free layer offset field is thus accompanied with a shift of the free layer and reference layer ferromagnetic resonance frequencies. The shifts depend on the mutual orientation of the two magnetizations. The offset field decreases with the resistance area product of the tunnel oxide. Patterning the tunnel junction into an STT-MRAM disk-shaped cell changes substantially the offset field, as the reduction of the lateral dimension comes with the generation of stray fields by the reference and the hard layer. The experimental offset field compares best with the spatial average of the sum of these stray fields, thereby providing guidelines for the offset field engineering.Comment: Special issue of J. Phys. D: Appl. Phys (2019) on STT-MRA

    Exchange stiffness in ultrathin perpendicularly-magnetized CoFeB layers determined using spin wave spectroscopy

    Full text link
    We measure the frequencies of spin waves in nm-thick perpendicularly magnetized FeCoB systems, and model the frequencies to deduce the exchange stiffness of this material in the ultrathin limit. For this, we embody the layers in magnetic tunnel junctions patterned into circular nanopillars of diameters ranging from 100 to 300 nm and we use magneto-resistance to determine which rf-current frequencies are efficient in populating the spin wave modes. Micromagnetic calculations indicate that the ultrathin nature of the layer and the large wave vectors used ensure that the spin wave frequencies are predominantly determined by the exchange stiffness, such that the number of modes in a given frequency window can be used to estimate the exchange. For 1 nm layers the experimental data are consistent with an exchange stiffness A= 20 pJ/m, which is slightly lower that its bulk counterpart. The thickness dependence of the exchange stiffness has strong implications for the numerous situations that involve ultrathin films hosting strong magnetization gradients, and the micromagnetic description thereof.Comment: 5 pages, 4 figures, submitted to PR

    Dynamical influence of vortex-antivortex pairs in magnetic vortex oscillators

    Full text link
    We study the magnetization dynamics in a nanocontact magnetic vortex oscillators as function of temperature. Low temperature experiments reveal that the dynamics at low and high currents differ qualitatively. At low currents, we excite a temperature independent standard oscillation mode, consisting in the gyrotropic motion of a free layer vortex about the nanocontact. Above a critical current, a sudden jump of the frequency is observed, concomitant with a substantial increase of the frequency versus current slope factor. Using micromagnetic simulation and analytical modeling, we associate this new regime to the creation of a vortex-antivortex pair in the pinned layer of the spin valve. The vortex-antivortex distance depends on the Oersted field which favors a separation, and on the exchange bias field, which favors pair merging. The pair in the pinned layer provides an additional spin torque altering the dynamics of the free layer vortex, which can be quantitatively accounted for by an analytical model

    Current-driven vortex oscillations in metallic nanocontacts

    Get PDF
    We present experimental evidence of sub-GHz spin-transfer oscillations in metallic nano-contacts that are due to the translational motion of a magnetic vortex. The vortex is shown to execute large-amplitude orbital motion outside the contact region. Good agreement with analytical theory and micromagnetics simulations is found.Comment: 4 pages, 3 figure

    Auto-oscillation threshold, narrow spectral lines, and line jitter in spin-torque oscillators based on MgO magnetic tunnel junctions

    Full text link
    We demonstrate spin torque induced auto-oscillation in MgO-based magnetic tunnel junctions. At the generation threshold, we observe a strong line narrowing down to 6 MHz at 300K and a dramatic increase in oscillator power, yielding spectrally pure oscillations free of flicker noise. Setting the synthetic antiferromagnet into autooscillation requires the same current polarity as the one needed to switch the free layer magnetization. The induced auto-oscillations are observed even at zero applied field, which is believed to be the acoustic mode of the synthetic antiferromagnet. While the phase coherence of the auto-oscillation is of the order of microseconds, the power autocorrelation time is of the order of milliseconds and can be strongly influenced by the free layer dynamics
    corecore