416 research outputs found
Roturas tendinosas y musculares en el hombro del deportista
El complejo articular del hombro está sometido
a solicitaciones mecánicas en la mayoría
de las modalidades deportivas; así el 10-15%
de los traumatismos sufridos por los atletas
afectan a esta articulación (1). La "patología
reina" del hombro del deportista es la inestabilidad,
por su frecuencia, importantes implicaciones
funcionales y tratamiento problemático. Por
el contrario, las roturas musculares y tendinosas
del hombro son lesiones poco frecuentes en
el deportista pero no por ello irrelevantes, pues
pueden provocar una gran incapacidad para
seguir desempeñando el mismo deporte y al
mismo nivel de competición si no se hace un
tratamiento correcto, a pesar del cual a veces
los resultados no son satisfactorios. Es decir,
pueden representar el "principio del fin" de la
actividad deportiva. Tibone y cols. (2) en un
estudio realizado sobre tratamiento quirúrgico
de roturas del manguito de los rotadores en
atletas, encuentran que sólo el 32% de los jugadores
de baseball profesionales tratados por
ellos volvían a jugar en la liga profesional
americana después de su lesión
X-ray detection with Micromegas with background levels below 10 keVcms
Micromegas detectors are an optimum technological choice for the detection of
low energy x-rays. The low background techniques applied to these detectors
yielded remarkable background reductions over the years, being the CAST
experiment beneficiary of these developments. In this document we report on the
latest upgrades towards further background reductions and better understanding
of the detectors' response. The upgrades encompass the readout electronics, a
new detector design and the implementation of a more efficient cosmic muon veto
system. Background levels below 10keVcms have been
obtained at sea level for the first time, demonstrating the feasibility of the
expectations posed by IAXO, the next generation axion helioscope. Some results
obtained with a set of measurements conducted in the x-ray beam of the CAST
Detector Laboratory will be also presented and discussed
Seismic modelling of the Cep star HD\,180642 (V1449\,Aql)
We present modelling of the Cep star HD\,180642 based on its
observational properties deduced from CoRoT and ground-based photometry as well
as from time-resolved spectroscopy. We investigate whether present-day
state-of-the-art models are able to explain the full seismic behaviour of this
star, which has extended observational constraints for this type of pulsator.
We constructed a dedicated database of stellar models and their oscillation
modes tuned to fit the dominant radial mode frequency of HD\,180642, by means
of varying the hydrogen content, metallicity, mass, age, and core overshooting
parameter. We compared the seismic properties of these models with those
observed. We find models that are able to explain the numerous observed
oscillation properties of the star, for a narrow range in mass of
11.4--11.8\,M and no or very mild overshooting (with up to 0.05 local
pressure scale heights), except for an excitation problem of the ,
p mode. We deduce a rotation period of about 13\,d, which is fully
compatible with recent magnetic field measurements. The seismic models do not
support the earlier claim of solar-like oscillations in the star. We instead
ascribe the power excess at high frequency to non-linear resonant mode coupling
between the high-amplitude radial fundamental mode and several of the low-order
pressure modes. We report a discrepancy between the seismic and spectroscopic
gravity at the level.Comment: 10 pages, 2 Tables, 6 Figures. Accepted for publication in Astronomy
and Astrophysic
Peginterferon alfa-2b plus weight-based ribavirin for 24 weeks in patients with chronic hepatitis C virus genotype 1 with low viral load who achieve rapid viral response
Testing the effects of opacity and the chemical mixture on the excitation of pulsations in B stars of the Magellanic Clouds
The B-type pulsators known as \beta Cephei and Slowly Pulsating B (SPB) stars
present pulsations driven by the \kappa mechanism, which operates thanks to an
opacity bump due to the iron group elements. In low-metallicity environments
such as the Magellanic Clouds, \beta Cep and SPB pulsations are not expected.
Nevertheless, recent observations show evidence for the presence of B-type
pulsator candidates in both galaxies. We seek an explanation for the excitation
of \beta Cep and SPB modes in those galaxies by examining basic input physics
in stellar modelling: i) the specific metal mixture of B-type stars in the
Magellanic Clouds; ii) the role of a potential underestimation of stellar
opacities. We first derive the present-day chemical mixtures of B-type stars in
the Magellanic Clouds. Then, we compute stellar models for that metal mixture
and perform a non-adiabatic analysis of these models. In a second approach, we
simulate parametric enhancements of stellar opacities due to different iron
group elements. We then study their effects in models of B stars and their
stability. We find that adopting a representative chemical mixture of B stars
in the Small Magellanic Cloud cannot explain the presence of B-type pulsators
there. An increase of the opacity in the region of the iron-group bump could
drive B-type pulsations, but only if this increase occurs at the temperature
corresponding to the maximum contribution of Ni to this opacity bump. We
recommend an accurate computation of Ni opacity to understand B-type pulsators
in the Small Magellanic Cloud, as well as the frequency domain observed in some
Galactic hybrid \beta Cep-SPB stars.Comment: 16 pages, 12 figures. Accepted for publication in MNRA
MAGIC Upper Limits for two Milagro-detected, Bright Fermi Sources in the Region of SNR G65.1+0.6
We report on the observation of the region around supernova remnant G65.1+0.6
with the stand-alone MAGIC-I telescope. This region hosts the two bright GeV
gamma-ray sources 1FGL J1954.3+2836 and 1FGL J1958.6+2845. They are identified
as GeV pulsars and both have a possible counterpart detected at about 35 TeV by
the Milagro observatory. MAGIC collected 25.5 hours of good quality data, and
found no significant emission in the range around 1 TeV. We therefore report
differential flux upper limits, assuming the emission to be point-like (<0.1
deg) or within a radius of 0.3 deg. In the point-like scenario, the flux limits
around 1 TeV are at the level of 3 % and 2 % of the Crab Nebula flux, for the
two sources respectively. This implies that the Milagro emission is either
extended over a much larger area than our point spread function, or it must be
peaked at energies beyond 1 TeV, resulting in a photon index harder than 2.2 in
the TeV band.Comment: 8 pages, 3 figures, 1 tabl
Peginterferon alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B
BACKGROUND: Available treatments for hepatitis B e antigen (HBeAg)-negative chronic hepatitis B are associated with poor sustained responses. As a result, nucleoside and nucleotide analogues are typically continued indefinitely, a strategy associated with the risk of resistance and unknown long-term safety implications. METHODS: We compared the efficacy and safety of peginterferon alfa-2a (180 microg once weekly) plus placebo, peginterferon alfa-2a plus lamivudine (100 mg daily), and lamivudine alone in 177, 179, and 181 patients with HBeAg-negative chronic hepatitis B, respectively. Patients were treated for 48 weeks and followed for an additional 24 weeks. RESULTS: After 24 weeks of follow-up, the percentage of patients with normalization of alanine aminotransferase levels or hepatitis B virus (HBV) DNA levels below 20,000 copies per milliliter was significantly higher with peginterferon alfa-2a monotherapy (59 percent and 43 percent, respectively) and peginterferon alfa-2a plus lamivudine (60 percent and 44 percent) than with lamivudine monotherapy (44 percent, P=0.004 and P=0.003, respectively; and 29 percent, P=0.007 and P=0.003, respectively). Rates of sustained suppression of HBV DNA to below 400 copies per milliliter were 19 percent with peginterferon alfa-2a monotherapy, 20 percent with combination therapy, and 7 percent with lamivudine alone (P<0.001 for both comparisons with lamivudine alone). Loss of hepatitis B surface antigen occurred in 12 patients in the peginterferon groups, as compared with 0 patients in the group given lamivudine alone. Adverse events, including pyrexia, fatigue, myalgia, and headache, were less frequent with lamivudine monotherapy than with peginterferon alfa-2a monotherapy or combination therapy. CONCLUSIONS: Patients with HBeAg-negative chronic hepatitis B had significantly higher rates of response, sustained for 24 weeks after the cessation of therapy, with peginterferon alfa-2a than with lamivudine. The addition of lamivudine to peginterferon alfa-2a did not improve post-therapy response rates. Copyright 2004 Massachusetts Medical Societypublished_or_final_versio
Electrical tuning of helical edge states in topological multilayers
Mainstream among topological insulators, GaSb/InAs quantum wells present a
broken gap alignment for the energy bands which supports the quantum spin Hall
insulator phase and forms an important building block in the search of exotic
states of matter. Such structures allow the band-gap inversion with electrons
and holes confined in adjacent layers, providing a fertile ground to tune the
corresponding topological properties. Using a full 3D 8-band method we investigate the inverted band structure of GaSb/InAs/GaSb and
InAs/GaSb/InAs multilayers and the behavior of the helical edge states, under
the influence of an electric field applied along the growth direction. By
tuning the electric field modulus, we induce the change of the energy levels of
both conduction and valence bands, resulting in a quantum spin Hall insulator
phase where the helical edge states are predominantly confined in the GaSb
layer. In particular, we found that InAs/GaSb/InAs has a large hybridization
gap of about and, therefore, are promising to observe
massless Dirac fermions with a large Fermi velocity. Our comprehensive
characterization of GaSb/InAs multilayers creates a basis platform upon which
further optimization of III-V heterostructures can be contrasted.Comment: 17 pages, 10 figure
Kepler observations of variability in B-type stars
The analysis of the light curves of 48 B-type stars observed by Kepler is
presented. Among these are 15 pulsating stars, all of which show low
frequencies characteristic of SPB stars. Seven of these stars also show a few
weak, isolated high frequencies and they could be considered as SPB/beta Cep
hybrids. In all cases the frequency spectra are quite different from what is
seen from ground-based observations. We suggest that this is because most of
the low frequencies are modes of high degree which are predicted to be unstable
in models of mid-B stars. We find that there are non-pulsating stars within the
beta Cep and SPB instability strips. Apart from the pulsating stars, we can
identify stars with frequency groupings similar to what is seen in Be stars but
which are not Be stars. The origin of the groupings is not clear, but may be
related to rotation. We find periodic variations in other stars which we
attribute to proximity effects in binary systems or possibly rotational
modulation. We find no evidence for pulsating stars between the cool edge of
the SPB and the hot edge of the delta Sct instability strips. None of the stars
show the broad features which can be attributed to stochastically-excited modes
as recently proposed. Among our sample of B stars are two chemically peculiar
stars, one of which is a HgMn star showing rotational modulation in the light
curve.Comment: 19 pages, 11 figures, 4 table
Future axion searches with the International Axion Observatory (IAXO)
The International Axion Observatory (IAXO) is a new generation axion helioscope aiming at a sensitivity to the axion-photon coupling of ga\u3b3 3c few
7 10-12 GeV-1, i.e. 1-1.5 orders of magnitude beyond the one achieved by CAST, currently the most sensitive axion helioscope. The main elements of IAXO are an increased magnetic field volume together with extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested in CAST. Additional physics cases of IAXO could include the detection of electron-coupled axions invoked to explain the white dwarf cooling, relic axions, and a large variety of more generic axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics
- …
