416 research outputs found

    Roturas tendinosas y musculares en el hombro del deportista

    Get PDF
    El complejo articular del hombro está sometido a solicitaciones mecánicas en la mayoría de las modalidades deportivas; así el 10-15% de los traumatismos sufridos por los atletas afectan a esta articulación (1). La "patología reina" del hombro del deportista es la inestabilidad, por su frecuencia, importantes implicaciones funcionales y tratamiento problemático. Por el contrario, las roturas musculares y tendinosas del hombro son lesiones poco frecuentes en el deportista pero no por ello irrelevantes, pues pueden provocar una gran incapacidad para seguir desempeñando el mismo deporte y al mismo nivel de competición si no se hace un tratamiento correcto, a pesar del cual a veces los resultados no son satisfactorios. Es decir, pueden representar el "principio del fin" de la actividad deportiva. Tibone y cols. (2) en un estudio realizado sobre tratamiento quirúrgico de roturas del manguito de los rotadores en atletas, encuentran que sólo el 32% de los jugadores de baseball profesionales tratados por ellos volvían a jugar en la liga profesional americana después de su lesión

    X-ray detection with Micromegas with background levels below 106^{-6} keV1^{-1}cm2^{-2}s1^{-1}

    Full text link
    Micromegas detectors are an optimum technological choice for the detection of low energy x-rays. The low background techniques applied to these detectors yielded remarkable background reductions over the years, being the CAST experiment beneficiary of these developments. In this document we report on the latest upgrades towards further background reductions and better understanding of the detectors' response. The upgrades encompass the readout electronics, a new detector design and the implementation of a more efficient cosmic muon veto system. Background levels below 106^{-6}keV1^{-1}cm2^{-2}s1^{-1} have been obtained at sea level for the first time, demonstrating the feasibility of the expectations posed by IAXO, the next generation axion helioscope. Some results obtained with a set of measurements conducted in the x-ray beam of the CAST Detector Laboratory will be also presented and discussed

    Seismic modelling of the β\beta\,Cep star HD\,180642 (V1449\,Aql)

    Get PDF
    We present modelling of the β\beta\,Cep star HD\,180642 based on its observational properties deduced from CoRoT and ground-based photometry as well as from time-resolved spectroscopy. We investigate whether present-day state-of-the-art models are able to explain the full seismic behaviour of this star, which has extended observational constraints for this type of pulsator. We constructed a dedicated database of stellar models and their oscillation modes tuned to fit the dominant radial mode frequency of HD\,180642, by means of varying the hydrogen content, metallicity, mass, age, and core overshooting parameter. We compared the seismic properties of these models with those observed. We find models that are able to explain the numerous observed oscillation properties of the star, for a narrow range in mass of 11.4--11.8\,M_\odot and no or very mild overshooting (with up to 0.05 local pressure scale heights), except for an excitation problem of the =3\ell=3, p1_1 mode. We deduce a rotation period of about 13\,d, which is fully compatible with recent magnetic field measurements. The seismic models do not support the earlier claim of solar-like oscillations in the star. We instead ascribe the power excess at high frequency to non-linear resonant mode coupling between the high-amplitude radial fundamental mode and several of the low-order pressure modes. We report a discrepancy between the seismic and spectroscopic gravity at the 2.5σ2.5\sigma level.Comment: 10 pages, 2 Tables, 6 Figures. Accepted for publication in Astronomy and Astrophysic

    Testing the effects of opacity and the chemical mixture on the excitation of pulsations in B stars of the Magellanic Clouds

    Full text link
    The B-type pulsators known as \beta Cephei and Slowly Pulsating B (SPB) stars present pulsations driven by the \kappa mechanism, which operates thanks to an opacity bump due to the iron group elements. In low-metallicity environments such as the Magellanic Clouds, \beta Cep and SPB pulsations are not expected. Nevertheless, recent observations show evidence for the presence of B-type pulsator candidates in both galaxies. We seek an explanation for the excitation of \beta Cep and SPB modes in those galaxies by examining basic input physics in stellar modelling: i) the specific metal mixture of B-type stars in the Magellanic Clouds; ii) the role of a potential underestimation of stellar opacities. We first derive the present-day chemical mixtures of B-type stars in the Magellanic Clouds. Then, we compute stellar models for that metal mixture and perform a non-adiabatic analysis of these models. In a second approach, we simulate parametric enhancements of stellar opacities due to different iron group elements. We then study their effects in models of B stars and their stability. We find that adopting a representative chemical mixture of B stars in the Small Magellanic Cloud cannot explain the presence of B-type pulsators there. An increase of the opacity in the region of the iron-group bump could drive B-type pulsations, but only if this increase occurs at the temperature corresponding to the maximum contribution of Ni to this opacity bump. We recommend an accurate computation of Ni opacity to understand B-type pulsators in the Small Magellanic Cloud, as well as the frequency domain observed in some Galactic hybrid \beta Cep-SPB stars.Comment: 16 pages, 12 figures. Accepted for publication in MNRA

    MAGIC Upper Limits for two Milagro-detected, Bright Fermi Sources in the Region of SNR G65.1+0.6

    Get PDF
    We report on the observation of the region around supernova remnant G65.1+0.6 with the stand-alone MAGIC-I telescope. This region hosts the two bright GeV gamma-ray sources 1FGL J1954.3+2836 and 1FGL J1958.6+2845. They are identified as GeV pulsars and both have a possible counterpart detected at about 35 TeV by the Milagro observatory. MAGIC collected 25.5 hours of good quality data, and found no significant emission in the range around 1 TeV. We therefore report differential flux upper limits, assuming the emission to be point-like (<0.1 deg) or within a radius of 0.3 deg. In the point-like scenario, the flux limits around 1 TeV are at the level of 3 % and 2 % of the Crab Nebula flux, for the two sources respectively. This implies that the Milagro emission is either extended over a much larger area than our point spread function, or it must be peaked at energies beyond 1 TeV, resulting in a photon index harder than 2.2 in the TeV band.Comment: 8 pages, 3 figures, 1 tabl

    Peginterferon alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B

    Get PDF
    BACKGROUND: Available treatments for hepatitis B e antigen (HBeAg)-negative chronic hepatitis B are associated with poor sustained responses. As a result, nucleoside and nucleotide analogues are typically continued indefinitely, a strategy associated with the risk of resistance and unknown long-term safety implications. METHODS: We compared the efficacy and safety of peginterferon alfa-2a (180 microg once weekly) plus placebo, peginterferon alfa-2a plus lamivudine (100 mg daily), and lamivudine alone in 177, 179, and 181 patients with HBeAg-negative chronic hepatitis B, respectively. Patients were treated for 48 weeks and followed for an additional 24 weeks. RESULTS: After 24 weeks of follow-up, the percentage of patients with normalization of alanine aminotransferase levels or hepatitis B virus (HBV) DNA levels below 20,000 copies per milliliter was significantly higher with peginterferon alfa-2a monotherapy (59 percent and 43 percent, respectively) and peginterferon alfa-2a plus lamivudine (60 percent and 44 percent) than with lamivudine monotherapy (44 percent, P=0.004 and P=0.003, respectively; and 29 percent, P=0.007 and P=0.003, respectively). Rates of sustained suppression of HBV DNA to below 400 copies per milliliter were 19 percent with peginterferon alfa-2a monotherapy, 20 percent with combination therapy, and 7 percent with lamivudine alone (P<0.001 for both comparisons with lamivudine alone). Loss of hepatitis B surface antigen occurred in 12 patients in the peginterferon groups, as compared with 0 patients in the group given lamivudine alone. Adverse events, including pyrexia, fatigue, myalgia, and headache, were less frequent with lamivudine monotherapy than with peginterferon alfa-2a monotherapy or combination therapy. CONCLUSIONS: Patients with HBeAg-negative chronic hepatitis B had significantly higher rates of response, sustained for 24 weeks after the cessation of therapy, with peginterferon alfa-2a than with lamivudine. The addition of lamivudine to peginterferon alfa-2a did not improve post-therapy response rates. Copyright 2004 Massachusetts Medical Societypublished_or_final_versio

    Electrical tuning of helical edge states in topological multilayers

    Full text link
    Mainstream among topological insulators, GaSb/InAs quantum wells present a broken gap alignment for the energy bands which supports the quantum spin Hall insulator phase and forms an important building block in the search of exotic states of matter. Such structures allow the band-gap inversion with electrons and holes confined in adjacent layers, providing a fertile ground to tune the corresponding topological properties. Using a full 3D 8-band kp{\bf k}\cdot{\bf p} method we investigate the inverted band structure of GaSb/InAs/GaSb and InAs/GaSb/InAs multilayers and the behavior of the helical edge states, under the influence of an electric field applied along the growth direction. By tuning the electric field modulus, we induce the change of the energy levels of both conduction and valence bands, resulting in a quantum spin Hall insulator phase where the helical edge states are predominantly confined in the GaSb layer. In particular, we found that InAs/GaSb/InAs has a large hybridization gap of about 12meV12\,\textrm{meV} and, therefore, are promising to observe massless Dirac fermions with a large Fermi velocity. Our comprehensive characterization of GaSb/InAs multilayers creates a basis platform upon which further optimization of III-V heterostructures can be contrasted.Comment: 17 pages, 10 figure

    Kepler observations of variability in B-type stars

    Full text link
    The analysis of the light curves of 48 B-type stars observed by Kepler is presented. Among these are 15 pulsating stars, all of which show low frequencies characteristic of SPB stars. Seven of these stars also show a few weak, isolated high frequencies and they could be considered as SPB/beta Cep hybrids. In all cases the frequency spectra are quite different from what is seen from ground-based observations. We suggest that this is because most of the low frequencies are modes of high degree which are predicted to be unstable in models of mid-B stars. We find that there are non-pulsating stars within the beta Cep and SPB instability strips. Apart from the pulsating stars, we can identify stars with frequency groupings similar to what is seen in Be stars but which are not Be stars. The origin of the groupings is not clear, but may be related to rotation. We find periodic variations in other stars which we attribute to proximity effects in binary systems or possibly rotational modulation. We find no evidence for pulsating stars between the cool edge of the SPB and the hot edge of the delta Sct instability strips. None of the stars show the broad features which can be attributed to stochastically-excited modes as recently proposed. Among our sample of B stars are two chemically peculiar stars, one of which is a HgMn star showing rotational modulation in the light curve.Comment: 19 pages, 11 figures, 4 table

    Future axion searches with the International Axion Observatory (IAXO)

    Get PDF
    The International Axion Observatory (IAXO) is a new generation axion helioscope aiming at a sensitivity to the axion-photon coupling of ga\u3b3 3c few 7 10-12 GeV-1, i.e. 1-1.5 orders of magnitude beyond the one achieved by CAST, currently the most sensitive axion helioscope. The main elements of IAXO are an increased magnetic field volume together with extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested in CAST. Additional physics cases of IAXO could include the detection of electron-coupled axions invoked to explain the white dwarf cooling, relic axions, and a large variety of more generic axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics
    corecore