3,836 research outputs found
Quantum Restoration of the U(1)_Y Symmetry in Dynamically Broken SUSY-GUT's
We propose a supersymmetric hypercolor SU(3)_H gauge theory interacting
strongly at the grand unification scale, in which the hyperquark condensation
breaks SU(5)_GUT down to SU(3)_C x SU(2)_L without unbroken U(1)_Y at the
classical level. However, we show that the broken U(1)_Y symmetry is restored
by quantum mechanical effects and hence there remains the standard-model gauge
symmetry at the electroweak scale. The dynamics of the strong interactions also
produces naturally a pair of massless Higgs doublets. In addition to these
Higgs doublets, we have a pair of massless singlets which contributes to the
renormalization-group equations of gauge coupling constants and hence affects
the GUT unification. We discuss a simple solution to this problem.Comment: 12 pages, LaTeX, 1 Postscript figur
Flavor Changing Neutral Currents in a Realistic Composite Technicolor Model
We consider the phenomenology of a composite technicolor model proposed
recently by Georgi. Composite technicolor interactions produce four-quark
operators in the low energy theory that contribute to flavor changing neutral
current processes. While we expect operators of this type to be induced at the
compositeness scale by the flavor-symmetry breaking effects of the preon mass
matrices, the Georgi model also includes operators from higher scales that are
not GIM-suppressed. Since these operators are potentially large, we study their
impact on flavor changing neutral currents and CP violation in the neutral ,
, and meson systems.Comment: 16 pages, LaTeX + embedded PicTeX figures requiring prepictex,
pictex, and postpictex inputs. HUTP.STY include
SUSY GUTs under Siege : Proton Decay
SO(10) supersymmetric grand unified theories [SUSY GUTs] provide a beautiful
framework for physics beyond the standard model. Experimental measurements of
the three gauge couplings are consistent with unification at a scale GeV. In addition predictive models for fermion masses and
mixing angles have been found which fit the low energy data, including the
recent data for neutrino oscillations. SO(10) boundary conditions can be tested
via the spectrum of superparticles. The simplest models also predict neutron
and proton decay rates. In this paper we discuss nucleon decay rates and obtain
reasonable upper bounds. A clear picture of the allowed SUSY spectra as
constrained by nucleon decay is presented.Comment: 13 page
Sneutrino condensate as a candidate for the hot big bang cosmology
If inflationary paradigm is correct, then it must create conditions for the
hot big bang model with all observed matter, baryons and the seed perturbations
for the structure formation. In this paper we propose a scenario where the
inflaton energy density is dumped into the bulk in a brane world setup, and all
the required physical conditions are created by the right handed neutrino
sector within supersymmetry. The scalar component of the right handed Majorana
neutrino is responsible for generating the scale invariant fluctuations in the
cosmic microwave background radiation, reheating the Universe at a
temperature~ GeV, and finally generating the lepton/baryon
asymmetry, , with no lepton/baryon isocurvature
fluctuations.Comment: 19 pages, 3 figures. Some discussion on neutrino masses and
baryogenesis, and other small changes adde
Predictions for Higgs and SUSY spectra from SO(10) Yukawa Unification with mu > 0
We use Yukawa unification to constrain SUSY parameter space. We
find a narrow region survives for (suggested by \bsgam and the
anomalous magnetic moment of the muon) with , , \gev and \gev. Demanding Yukawa unification thus makes definite predictions for
Higgs and sparticle masses.Comment: 10 pages, 3 figures, revised version to be published in PR
Discovering New Physics in the Decays of Black Holes
If the scale of quantum gravity is near a TeV, the LHC will be producing one
black hole (BH) about every second, thus qualifying as a BH factory. With the
Hawking temperature of a few hundred GeV, these rapidly evaporating BHs may
produce new, undiscovered particles with masses ~100 GeV. The probability of
producing a heavy particle in the decay depends on its mass only weakly, in
contrast with the exponentially suppressed direct production. Furthemore, BH
decays with at least one prompt charged lepton or photon correspond to the
final states with low background. Using the Higgs boson as an example, we show
that it may be found at the LHC on the first day of its operation, even with
incomplete detectors.Comment: 4 pages, 3 figure
Prompt Decays of General Neutralino NLSPs at the Tevatron
Recent theoretical developments have shown that gauge mediation has a much
larger parameter space of possible spectra and mixings than previously
considered. Motivated by this, we explore the collider phenomenology of gauge
mediation models where a general neutralino is the lightest MSSM superpartner
(the NLSP), focusing on the potential reach from existing and future Tevatron
searches. Promptly decaying general neutralino NLSPs can give rise to final
states involving missing energy plus photons, Zs, Ws and/or Higgses. We survey
the final states and determine those where the Tevatron should have the most
sensitivity. We then estimate the reach of existing Tevatron searches in these
final states and discuss new searches (or optimizations of existing ones) that
should improve the reach. Finally we comment on the potential for discovery at
the LHC.Comment: 41 pages, minor changes, added refs and discussion of previous
literatur
A New Technique for Detecting Supersymmetric Dark Matter
We estimate the event rate for excitation of atomic transition by
photino-like dark matter. For excitations of several eV, this event rate can
exceed naive cross-section by many orders of magnitude. Although the event rate
for these atomic excitation is smaller than that of nuclear recoil off of
non-zero spin nuclei, the photons emitted by the deexcitation are easier to
detect than low-energy nuclear recoils. For many elements, there are several
low-lying states with comparable excitation rates, thus, spectral ratios could
be used to distinguish signal from background.Comment: 6 pages plain te
Cosmological perturbations from inhomogeneous preheating and multi-field trapping
We consider inhomogeneous preheating in a multi-field trapping model. The
curvature perturbation is generated by inhomogeneous preheating which induces
multi-field trapping at the enhanced symmetric point (ESP), and results in
fluctuation in the number of e-foldings. Instead of considering simple
reheating after preheating, we consider a scenario of shoulder inflation
induced by the trapping. The fluctuation in the number of e-foldings is
generated during this weak inflationary period, when the additional light
scalar field is trapped at the local maximum of its potential. The situation
may look similar to locked or thermal inflation or even to hybrid inflation,
but we will show that the present mechanism of generating the curvature
perturbation is very different from these others. Unlike the conventional
trapped inflationary scenario, we do not make the assumption that an ESP
appears at some unstable point on the inflaton potential. This assumption is
crucial in the original scenario, but it is not important in the multi-field
model. We also discuss inhomogeneous preheating at late-time oscillation, in
which the magnitude of the curvature fluctuation can be enhanced to accommodate
low inflationary scale.Comment: 18pages, 2 figures, to appear in JHE
Running spectral index from shooting-star moduli
We construct an inflationary model that is consistent with both large
non-Gaussianity and a running spectral index. The scenario of modulated
inflation suggests that modulated perturbation can induce the curvature
perturbation with a large non-Gaussianity, even if the inflaton perturbation is
negligible. Using this idea, we consider a multi-field extension of the
modulated inflation scenario and examine the specific situation where different
moduli are responsible for the perturbation at different scales. We suppose
that the additional moduli (shooting-star moduli) is responsible for the
curvature perturbation at the earlier inflationary epoch and it generates the
fluctuation with n>1 spectral index at this scale. After a while, another
moduli (or inflaton) takes the place and generates the perturbation with n<1.
At the transition point the two fluctuations are comparable with each other. We
show how the spectral index is affected by the transition induced by the
shooting-star moduli.Comment: 14 pages, latex, accepted for publication in JHE
- …
