16,180 research outputs found
The HERMES Solar Atlas and the spectroscopic analysis of the seismic solar analogue KIC3241581
Solar-analog stars provide an excellent opportunity to study the Sun's
evolution, i.e. the changes with time in stellar structure, activity, or
rotation for solar-like stars. The unparalleled photometric data from the NASA
space telescope Kepler allows us to study and characterise solar-like stars
through asteroseismology. We aim to spectroscopically investigate the
fundamental parameter and chromospheric activity of solar analogues and twins,
based on observations obtained with the HERMES spectrograph and combine them
with asteroseismology. Therefore, we need to build a solar atlas for the
spectrograph, to provide accurate calibrations of the spectroscopically
determined abundances of solar and late type stars observed with this
instrument and thus perform differential spectral comparisons. We acquire
high-resolution and high signal-to-noise spectroscopy to construct three solar
reference spectra by observing the reflected light of Vesta and Victoria
asteroids and Europa (100<S/N<450) with the \Hermes spectrograph. We then
observe the Kepler solar analog KIC3241581 (S/N~170). We constructed three
solar spectrum atlases from 385 to 900 nm obtained with the Hermes spectrograph
from observations of two bright asteroids and Europa. A comparison between our
solar spectra atlas to the Kurucz and HARPS solar spectrum shows an excellent
agreement. KIC3241581 was found to be a long-periodic binary system. The
fundamental parameter for the stellar primary component are Teff=5689+/-11K,
logg=4.385+/-0.005, [Fe/H]=+0.22+/-0.01, being in agreement with the published
global seismic values confirming its status of solar analogue. KIC 3241581 is a
metal rich solar analogue with a solar-like activity level in a binary system
of unknown period. The chromospheric activity level is compatible to the solar
magnetic activity.Comment: 12 pages, 8 figures, accepted for publication in A&
Source identification for mobile devices, based on wavelet transforms combined with sensor imperfections
One of the most relevant applications of digital image forensics is to accurately identify the device used for taking a given set of images, a problem called source identification. This paper studies recent developments in the field and proposes the mixture of two techniques (Sensor Imperfections and Wavelet Transforms) to get better source identification of images generated with mobile devices. Our results show that Sensor Imperfections and Wavelet Transforms can jointly serve as good forensic features to help trace the source camera of images produced by mobile phones. Furthermore, the model proposed here can also determine with high precision both the brand and model of the device
Who Watches the Watchmen? An Appraisal of Benchmarks for Multiple Sequence Alignment
Multiple sequence alignment (MSA) is a fundamental and ubiquitous technique
in bioinformatics used to infer related residues among biological sequences.
Thus alignment accuracy is crucial to a vast range of analyses, often in ways
difficult to assess in those analyses. To compare the performance of different
aligners and help detect systematic errors in alignments, a number of
benchmarking strategies have been pursued. Here we present an overview of the
main strategies--based on simulation, consistency, protein structure, and
phylogeny--and discuss their different advantages and associated risks. We
outline a set of desirable characteristics for effective benchmarking, and
evaluate each strategy in light of them. We conclude that there is currently no
universally applicable means of benchmarking MSA, and that developers and users
of alignment tools should base their choice of benchmark depending on the
context of application--with a keen awareness of the assumptions underlying
each benchmarking strategy.Comment: Revie
X-ray absorption spectroscopy study of diluted magnetic semiconductors: Zn1-xMxSe (M = Mn, Fe, Co) and Zn1-xMnxY (Y = Se, Te)
We have investigated 3d electronic states of doped transition metals in II-VI
diluted magnetic semiconductors, Zn1-xMxSe (M = Mn, Fe, Co) and Zn1-xMnxY (Y =
Se, Te), using the transition-metal L2,3-edge X-ray absorption spectroscopy
(XAS) measurements. In order to explain the XAS spectra, we employed a
tetragonal cluster model calculation, which includes not only the full ionic
multiplet structure but also configuration interaction (CI). The results show
that CI is essential to describe the experimental spectra adequately,
indicating the strong hybridization between the transition metal 3d and the
ligand p orbitals. In the study of Zn1-xMnxY (Y = Se, Te), we also found
considerable spectral change in the Mn L2,3-edge XAS spectra for different
ligands, confirming the importance of the hybridization effects in these
materials.Comment: This paper consists of 22 pages including 4 figures. This paper is
submitted to Physical Review
The radius and mass of the close solar twin 18 Sco derived from asteroseismology and interferometry
The growing interest in solar twins is motivated by the possibility of
comparing them directly to the Sun. To carry on this kind of analysis, we need
to know their physical characteristics with precision. Our first objective is
to use asteroseismology and interferometry on the brightest of them: 18 Sco. We
observed the star during 12 nights with HARPS for seismology and used the PAVO
beam-combiner at CHARA for interferometry. An average large frequency
separation Hz and angular and linear radiuses of mas and R were estimated. We used these
values to derive the mass of the star, M.Comment: 5 pages, 5 figure
High angular resolution integral-field spectroscopy of the Galaxy's nuclear cluster: a missing stellar cusp?
We report on the structure of the nuclear star cluster in the innermost 0.16
pc of the Galaxy as measured by the number density profile of late-type giants.
Using laser guide star adaptive optics in conjunction with the integral field
spectrograph, OSIRIS, at the Keck II telescope, we are able to differentiate
between the older, late-type ( 1 Gyr) stars, which are presumed to be
dynamically relaxed, and the unrelaxed young ( 6 Myr) population. This
distinction is crucial for testing models of stellar cusp formation in the
vicinity of a black hole, as the models assume that the cusp stars are in
dynamical equilibrium in the black hole potential. Based on the late-type stars
alone, the surface stellar number density profile, , is flat, with . Monte Carlo simulations of
the possible de-projected volume density profile, n(r) ,
show that is less than 1.0 at the 99.73 % confidence level. These
results are consistent with the nuclear star cluster having no cusp, with a
core profile that is significantly flatter than predicted by most cusp
formation theories, and even allows for the presence of a central hole in the
stellar distribution. Of the possible dynamical interactions that can lead to
the depletion of the red giants observable in this survey -- stellar
collisions, mass segregation from stellar remnants, or a recent merger event --
mass segregation is the only one that can be ruled out as the dominant
depletion mechanism. The lack of a stellar cusp around a supermassive black
hole would have important implications for black hole growth models and
inferences on the presence of a black hole based upon stellar distributions.Comment: 35 pages, 5 tables, 12 figures, accepted by Ap
Microscopic study of the isoscalar giant resonances in 208Pb induced by inelastic alpha scattering
The energetic beam of (spin and isospin zero) -particles remains a
very efficient probe for the nuclear isoscalar giant resonances. In the present
work, a microscopic folding model study of the isoscalar giant resonances in
Pb induced by inelastic \aPb scattering at and 386
MeV has been performed using the (complex) CDM3Y6 interaction and nuclear
transition densities given by both the collective model and Random Phase
Approximation (RPA) approach. The fractions of energy weighted sum rule around
the main peaks of the isoscalar monopole, dipole and quadrupole giant
resonances were probed in the Distorted Wave Born Approximation analysis of
inelastic \aPb scattering using the double-folded form factors given by
different choices of the nuclear transition densities. The energy distribution
of the and strengths given by the multipole decomposition
{analyses} of the \aap data under study are compared with those predicted by
the RPA calculation.Comment: Accepted for publication in Nuclear Physics
Robust modeling of human contact networks across different scales and proximity-sensing techniques
The problem of mapping human close-range proximity networks has been tackled
using a variety of technical approaches. Wearable electronic devices, in
particular, have proven to be particularly successful in a variety of settings
relevant for research in social science, complex networks and infectious
diseases dynamics. Each device and technology used for proximity sensing (e.g.,
RFIDs, Bluetooth, low-power radio or infrared communication, etc.) comes with
specific biases on the close-range relations it records. Hence it is important
to assess which statistical features of the empirical proximity networks are
robust across different measurement techniques, and which modeling frameworks
generalize well across empirical data. Here we compare time-resolved proximity
networks recorded in different experimental settings and show that some
important statistical features are robust across all settings considered. The
observed universality calls for a simplified modeling approach. We show that
one such simple model is indeed able to reproduce the main statistical
distributions characterizing the empirical temporal networks
What do we learn from Resonance Production in Heavy Ion Collisions?
Resonances with their short life time and strong coupling to the dense and
hot medium are suggested as a signature of the early stage of the fireball
created in a heavy ion collision \cite{rap00,lut01,lut02}. The comparison of
resonances with different lifetimes and quark contents may give information
about time evolution and density and temperature of during the expanding of
fireball medium. Resonances in elementary reactions have been measured since
1960. Resonance production in elementary collisions compared with heavy ion
collisions where we expect to create a hot and dense medium may show the direct
of influence of the medium on the resonances. This paper shows a selection of
the recent resonance measurements from SPS and RHIC heavy ion colliders.Comment: 10 pages, 8 figures, HotQuarks 2004 conference proceeding
- …
