1,737 research outputs found
Absolute velocity measurements in sunspot umbrae
In sunspot umbrae, convection is largely suppressed by the strong magnetic
field. Previous measurements reported on negligible convective flows in umbral
cores. Based on this, numerous studies have taken the umbra as zero reference
to calculate Doppler velocities of the ambient active region. To clarify the
amount of convective motion in the darkest part of umbrae, we directly measured
Doppler velocities with an unprecedented accuracy and precision. We performed
spectroscopic observations of sunspot umbrae with the Laser Absolute Reference
Spectrograph (LARS) at the German Vacuum Tower Telescope. A laser frequency
comb enabled the calibration of the high-resolution spectrograph and absolute
wavelength positions. A thorough spectral calibration, including the
measurement of the reference wavelength, yielded Doppler shifts of the spectral
line Ti i 5713.9 {\AA} with an uncertainty of around 5 m s-1. The measured
Doppler shifts are a composition of umbral convection and magneto-acoustic
waves. For the analysis of convective shifts, we temporally average each
sequence to reduce the superimposed wave signal. Compared to convective
blueshifts of up to -350 m s-1 in the quiet Sun, sunspot umbrae yield a
strongly reduced convective blueshifts around -30 m s-1. {W}e find that the
velocity in a sunspot umbra correlates significantly with the magnetic field
strength, but also with the umbral temperature defining the depth of the
titanium line. The vertical upward motion decreases with increasing field
strength. Extrapolating the linear approximation to zero magnetic field
reproduces the measured quiet Sun blueshift. Simply taking the sunspot umbra as
a zero velocity reference for the calculation of photospheric Dopplergrams can
imply a systematic velocity error.Comment: 10 pages, 7 figures, 2 tables, Appendix with 5 figure
Searching for Radio Pulsars in 3EG Sources at Urumqi Observatory
Since mid-2005, a pulsar searching system has been operating at 18 cm on the
25-m radio telescope of Urumqi Observatory. Test observations on known pulsars
show that the system can perform the intended task. The prospect of using this
system to observe 3EG sources and other target searching tasks is discussed.Comment: a training project about MSc thesi
Particulate emissions from large North American wildfires estimated using a new top-down method
Particulate matter emissions from wildfires affect climate, weather
and air quality. However, existing global and regional aerosol emission
estimates differ by a factor of up to 4 between different methods. Using
a novel approach, we estimate daily total particulate matter (TPM) emissions
from large wildfires in North American boreal and temperate regions. Moderate
Resolution Imaging Spectroradiometer (MODIS) fire location and aerosol
optical thickness (AOT) data sets are coupled with HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) atmospheric
dispersion simulations, attributing identified smoke plumes to sources.
Unlike previous approaches, the method (i) combines information from both
satellite and AERONET (AErosol RObotic NETwork) observations to take into account aerosol water uptake
and plume specific mass extinction efficiency when converting smoke AOT to
TPM, and (ii) does not depend on instantaneous emission rates observed during
individual satellite overpasses, which do not sample night-time emissions.
The method also allows multiple independent estimates for the same emission
period from imagery taken on consecutive days.
<br><br>
Repeated fire-emitted AOT estimates for the same emission period over 2 to 3
days of plume evolution show increases in plume optical thickness by
approximately 10 % for boreal events and by 40 % for
temperate emissions. Inferred median water volume fractions for aged
boreal and temperate smoke observations are 0.15 and 0.47 respectively,
indicating that the increased AOT is partly explained by aerosol water
uptake. TPM emission estimates for boreal events, which predominantly
burn during daytime, agree closely with bottom-up Global
Fire Emission Database (GFEDv4) and Global Fire Assimilation System
(GFASv1.0) inventories, but are lower by approximately 30 % compared
to Quick Fire Emission Dataset (QFEDv2) PM<sub>2. 5</sub>,
and are higher by approximately a factor of 2 compared to Fire Energetics and
Emissions Research (FEERv1) TPM estimates. The discrepancies are
larger for temperate fires, which are characterized by lower median
fire radiative power values and more significant night-time combustion. The TPM
estimates for this study for the biome are lower than QFED PM<sub>2. 5</sub> by
35 %, and are larger by factors of 2.4, 3.2 and 4
compared with FEER, GFED and GFAS inventories respectively. A large
underestimation of TPM emission by bottom-up GFED and GFAS indicates
low biases in emission factors or consumed biomass estimates for temperate
fires
Solitonic spin-liquid state due to the violation of the Lifshitz condition in FeTe
A combination of phenomenological analysis and M\"ossbauer spectroscopy
experiments on the tetragonal FeTe system indicates that the magnetic
ordering transition in compounds with higher Fe-excess, 0.11, is
unconventional. Experimentally, a liquid-like magnetic precursor with
quasi-static spin-order is found from significantly broadened M\"ossbauer
spectra at temperatures above the antiferromagnetic transition. The
incommensurate spin-density wave (SDW) order in FeTe is described by a
magnetic free energy that violates the weak Lifshitz condition in the Landau
theory of second-order transitions. The presence of multiple Lifshitz
invariants provides the mechanism to create multidimensional, twisted, and
modulated solitonic phases.Comment: 5 pages, 2 figure
Comb-calibrated solar spectroscopy through a multiplexed single-mode fiber channel
We investigate a new scheme for astronomical spectrograph calibration using
the laser frequency comb at the Solar Vacuum Tower Telescope on Tenerife. Our
concept is based upon a single-mode fiber channel, that simultaneously feeds
the spectrograph with comb light and sunlight. This yields nearly perfect
spatial mode matching between the two sources. In combination with the absolute
calibration provided by the frequency comb, this method enables extremely
robust and accurate spectroscopic measurements. The performance of this scheme
is compared to a sequence of alternating comb and sunlight, and to absorption
lines from Earth's atmosphere. We also show how the method can be used for
radial-velocity detection by measuring the well-explored 5-minute oscillations
averaged over the full solar disk. Our method is currently restricted to solar
spectroscopy, but with further evolving fiber-injection techniques it could
become an option even for faint astronomical targets.Comment: 21 pages, 11 figures. A video abstract for this paper is available on
youtube. For watching the video, please follow
https://www.youtube.com/watch?v=oshdZgrt89I . The video abstract is also
available for streaming and download on the related article website of New
Journal of Physic
A simple electrostatic model applicable to biomolecular recognition
An exact, analytic solution for a simple electrostatic model applicable to
biomolecular recognition is presented. In the model, a layer of high dielectric
constant material (representative of the solvent, water) whose thickness may
vary separates two regions of low dielectric constant material (representative
of proteins, DNA, RNA, or similar materials), in each of which is embedded a
point charge. For identical charges, the presence of the screening layer always
lowers the energy compared to the case of point charges in an infinite medium
of low dielectric constant. Somewhat surprisingly, the presence of a
sufficiently thick screening layer also lowers the energy compared to the case
of point charges in an infinite medium of high dielectric constant. For charges
of opposite sign, the screening layer always lowers the energy compared to the
case of point charges in an infinite medium of either high or low dielectric
constant. The behavior of the energy leads to a substantially increased
repulsive force between charges of the same sign. The repulsive force between
charges of opposite signs is weaker than in an infinite medium of low
dielectric constant material but stronger than in an infinite medium of high
dielectric constant material. The presence of this behavior, which we name
asymmetric screening, in the simple system presented here confirms the
generality of the behavior that was established in a more complicated system of
an arbitrary number of charged dielectric spheres in an infinite solvent.Comment: 15 pages, 6 figure
Rigorous treatment of electrostatics for spatially varying dielectrics based on energy minimization
A novel energy minimization formulation of electrostatics that allows
computation of the electrostatic energy and forces to any desired accuracy in a
system with arbitrary dielectric properties is presented. An integral equation
for the scalar charge density is derived from an energy functional of the
polarization vector field. This energy functional represents the true energy of
the system even in non-equilibrium states. Arbitrary accuracy is achieved by
solving the integral equation for the charge density via a series expansion in
terms of the equation's kernel, which depends only on the geometry of the
dielectrics. The streamlined formalism operates with volume charge
distributions only, not resorting to introducing surface charges by hand.
Therefore, it can be applied to any spatial variation of the dielectric
susceptibility, which is of particular importance in applications to
biomolecular systems. The simplicity of application of the formalism to real
problems is shown with analytical and numerical examples.Comment: 27 pages, 5 figure
Semimetalic antiferromagnetism in the half-Heusler compound CuMnSb
The half-Heusler compound CuMnSb, the first antiferromagnet (AFM) in the
Mn-based class of Heuslers and half-Heuslers that contains several conventional
and half metallic ferromagnets, shows a peculiar stability of its magnetic
order in high magnetic fields. Density functional based studies reveal an
unusual nature of its unstable (and therefore unseen) paramagnetic state, which
for one electron less (CuMnSn, for example) would be a zero gap semiconductor
(accidentally so) between two sets of very narrow, topologically separate bands
of Mn 3d character. The extremely flat Mn 3d bands result from the environment:
Mn has four tetrahedrally coordinated Cu atoms whose 3d states lie well below
the Fermi level, and the other four tetrahedrally coordinated sites are empty,
leaving chemically isolated Mn 3d states. The AFM phase can be pictured
heuristically as a self-doped CuMnSb compensated semimetal
with heavy mass electrons and light mass holes, with magnetic coupling
proceeding through Kondo and/or antiKondo coupling separately through the two
carrier types. The ratio of the linear specific heat coefficient and the
calculated Fermi level density of states indicates a large mass enhancement
, or larger if a correlated band structure is taken as the
reference
- …
