912 research outputs found
P03.11. Relaxation response intervention induces respiration and heart rate variability changes in hypertensives
THE CHANGING ECONOMIC SPATIAL STRUCTURE OF EUROPE
Many theoretical and practical works aim at describing the spatial structure of Europe, where spatial relations have undergone continuous change. This article gives an overview of models describing the spatial structure of Europe. Their diversity is highlighted by listing of these models, without any claim to completeness. Our study aims at describing the economic spatial structure of Europe with bi-dimensional regression analysis based on the gravitational model. With the help of the gravity model, we get a spatial image of the spatial structure of Europe. With these images, we can justify the appropriateness of the models based on different methodological backgrounds by comparing them with our results. Our goal is not to create and show a new model that overwrites the existing ones, but rather to contribute to understanding the European spatial structure through a new methodological approach
Quantum Forbidden-Interval Theorems for Stochastic Resonance
We extend the classical forbidden-interval theorems for a
stochastic-resonance noise benefit in a nonlinear system to a quantum-optical
communication model and a continuous-variable quantum key distribution model.
Each quantum forbidden-interval theorem gives a necessary and sufficient
condition that determines whether stochastic resonance occurs in quantum
communication of classical messages. The quantum theorems apply to any quantum
noise source that has finite variance or that comes from the family of
infinite-variance alpha-stable probability densities. Simulations show the
noise benefits for the basic quantum communication model and the
continuous-variable quantum key distribution model.Comment: 13 pages, 2 figure
Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers
Continuous-variable quantum key distribution protocols, based on Gaussian
modulation of the quadratures of coherent states, have been implemented in
recent experiments. A present limitation of such systems is the finite
efficiency of the detectors, which can in principle be compensated for by the
use of classical optical preamplifiers. Here we study this possibility in
detail, by deriving the modified secret key generation rates when an optical
parametric amplifier is placed at the output of the quantum channel. After
presenting a general set of security proofs, we show that the use of
preamplifiers does compensate for all the imperfections of the detectors when
the amplifier is optimal in terms of gain and noise. Imperfect amplifiers can
also enhance the system performance, under conditions which are generally
satisfied in practice.Comment: 11 pages, 7 figures, submitted to J. Phys. B (special issue on Few
Atoms Optics
Quantifying wet scavenging processes in aircraft observations of nitric acid and cloud condensation nuclei
Wet scavenging is an important sink term for many atmospheric constituents. However, production of precipitation in clouds is poorly understood, and pollutant removal through wet scavenging is difficult to separate from removal through dry scavenging, atmospheric mixing, or chemical transformations. Here we use airborne data from the International Consortium for Atmospheric Research on Transport and Transformation project to show that measured ratios of soluble and insoluble trace gases provide a useful indicator for quantifying wet scavenging. Specifically, nitric acid (HNO3), produced as a by-product of combustion, is highly soluble and removed efficiently from clouds by rain. Regional carbon monoxide (CO), which is also an indicator of anthropogenic activity, is insoluble and has a lifetime against oxidation of about a month. We find that relative concentrations of HNO3 to regional CO observed in clear air are negatively correlated with precipitation production rates in nearby cloudy air (r2 = 0.85). Also, we show that relative concentrations of HNO3 and CO can be used to quantify cloud condensation nucleus (CCN) scavenging by precipitating clouds. This is because CCN and HNO3 molecules are both fully soluble in cloud water and hence can be treated as analogous species insofar as wet scavenging is concerned. While approximate, the practical advantage of this approach to scavenging studies is that it requires only measurement in clear air and no a priori knowledge of the cloud or aerosol properties involved
High rate, long-distance quantum key distribution over 250km of ultra low loss fibres
We present a fully automated quantum key distribution prototype running at
625 MHz clock rate. Taking advantage of ultra low loss fibres and low-noise
superconducting detectors, we can distribute 6,000 secret bits per second over
100 km and 15 bits per second over 250km
Quantum Cryptography
Quantum cryptography could well be the first application of quantum mechanics
at the individual quanta level. The very fast progress in both theory and
experiments over the recent years are reviewed, with emphasis on open questions
and technological issues.Comment: 55 pages, 32 figures; to appear in Reviews of Modern Physic
Treatment challenges in and outside a network setting: Head and neck cancers
Head and neck cancer (HNC) is a rare disease that can affect different sites and is characterized by variable incidence and 5-year survival rates across Europe. Multiple factors need to be considered when choosing the most appropriate treatment for HNC patients, such as age, comorbidities, social issues, and especially whether to prefer surgery or radiation-based protocols. Given the complexity of this scenario, the creation of a highly specialized multidisciplinary team is recommended to guarantee the best oncological outcome and prevent or adequately treat any adverse effect. Data from literature suggest that the multidisciplinary team-based approach is beneficial for HNC patients and lead to improved survival rates. This result is likely due to improved diagnostic and staging accuracy, a more efficacious therapeutic approach and enhanced communication across disciplines. Despite the benefit of MTD, it must be noted that this approach requires considerable time, effort and financial resources and is usually more frequent in highly organized and high-volume centers. Literature data on clinical research suggest that patients treated in high-accrual centers report better treatment outcomes compared to patients treated in low-volume centers, where a lower radiotherapy-compliance and worst overall survival have been reported. There is general agreement that treatment of rare cancers such as HNC should be concentrated in high volume, specialized and multidisciplinary centers. In order to achieve this goal, the creation of international collaboration network is fundamental. The European Reference Networks for example aim to create an international virtual advisory board, whose objectives are the exchange of expertise, training, clinical collaboration and the reduction of disparities and enhancement of rationalize migration across Europe. The purpose of our work is to review all aspects and challenges in and outside this network setting planned for the management of HNC patients
Quantum asymmetric cryptography with symmetric keys
Based on quantum encryption, we present a new idea for quantum public-key
cryptography (QPKC) and construct a whole theoretical framework of a QPKC
system. We show that the quantum-mechanical nature renders it feasible and
reasonable to use symmetric keys in such a scheme, which is quite different
from that in conventional public-key cryptography. The security of our scheme
is analyzed and some features are discussed. Furthermore, the state-estimation
attack to a prior QPKC scheme is demonstrated.Comment: 8 pages, 1 figure, Revtex
Minding the Mental: Intentionality, Consciousness, and Daniel Dennett in Contemporary Philosophy of Mind
The mind. Sanctum sanctorum of subjectivity. Soundstage of the mental. Consciousness\u27 cockpit. Romping-grounds of the intentional. A great deal, it would seem, rides on the notion of mind. It\u27s not just that naughty children never do, or that people when irritated often claim to have half-a-one. Though perhaps telling in other ways, it isn\u27t so important that while we all think we lose ours from time to time, we rarely-if ever-doubt that we had one to begin with. Solipsists are perfectly willing to doubt that anyone else actually possesses one, but no one suspects that everyone but herself has one. The reason seems clear and distinct as Cartesian water; it just makes sense, which is another thing that minds are rumored to be responsible for. One could go on and on-the idioms seem endless-but nevermind
- …
