5,283 research outputs found
Modelling self-piercing riveted joint failures in automotive crash structures
This paper describes a new model and method to predict Self-Piercing Riveted (SPR) joint interlock failures in aluminium sheet at crash speeds using explicit finite element simulation. SPR interlock failure is dependent on rivet direction, which is included in the model. A mesh independent approach is adopted for connection model which is capable of industrial application at the full vehicle crash analysis level. The paper provides an overview of the approach to validate connection model; typically by developing detailed physics based models of various joint configurations supported with high speed experimental data, through to model capable of industrial application. The framework to validate connection model for use in crash simulation tools is expected to have broader applicatio
STM Studies of Synthetic Peptide Monolayers
We have used scanning probe microscopy to investigate self-assembled
monolayers of chemically synthesized peptides. We find that the peptides form a
dense uniform monolayer, above which is found a sparse additional layer. Using
scanning tunneling microscopy, submolecular resolution can be obtained,
revealing the alpha helices which constitute the peptide. The nature of the
images is not significantly affected by the incorporation of redox cofactors
(hemes) in the peptides.Comment: 4 pages, 3 figures (4 gifs); to appear in the Proceedings of the
XIIth Int. Winterschool on Electronic Properties of Novel Materials
"Molecular Nanostructures", Kirchberg/Tyrol, Febr. 199
Validating dynamic tensile mechanical properties of sheet steels for automotive crash applications
A thin-wall open channel beam, fabricated from high strength Dual Phase sheet steel, subjected to 3-point bending and constant velocity boundary condition, is investigated to validate material performance for automotive crash applications. Specifically quantitative validation of material tensile data determined from high speed tests and component models, and qualitative validation of materials resistance to fracture. The open channel beam is subjected to quasi-static and increasing loading speed and in all cases, large displacement in which deformation involves formation of a plastic hinge. This paper describes development of test procedure, notably beam specimen design, measurement system and boundary conditions, using both experimental and numerical techniques. The new test procedure, as a compliment to crush testing, will increase confidence in the modeling and application of new advanced higher strength materials in automotive crash structure
Anomalous quantum reflection of Bose-Einstein condensates from a silicon surface: the role of dynamical excitations
We investigate the effect of inter-atomic interactions on the
quantum-mechanical reflection of Bose-Einstein condensates from regions of
rapid potential variation. The reflection process depends critically on the
density and incident velocity of the condensate. For low densities and high
velocities, the atom cloud has almost the same form before and after
reflection. Conversely, at high densities and low velocities, the reflection
process generates solitons and vortex rings that fragment the condensate. We
show that this fragmentation can explain the anomalously low reflection
probabilities recently measured for low-velocity condensates incident on a
silicon surface.Comment: 5 figures, 5 pages, references correcte
Validating performance of automotive materials at high strain rate for improved crash design
This paper investigates sources of performance variability in high velocity testing of automotive crash structures. Sources of variability, or so called noise factors, present in a testing environment, arise from uncertainty in structural properties, joints, boundary conditions and measurement system. A box structure, which is representative of a crash component, is designed and fabricated from a high strength Dual Phase sheet steel. Crush tests are conducted at low and high speed. Such tests intend to validate a component model and material strain rate sensitivity data determined from high speed tensile testing. To support experimental investigations, stochastic modeling is used to investigate the effect of noise factors on crash structure performance variability, and to identify suitable performance measures to validate a component model and material strain rate sensitivity data. The results of the project will enable the measurement of more reliable strain rate sensitivity data for improved crashworthiness predictions of automotive structures
Probing Decoherence with Electromagnetically Induced Transparency in Superconductive Quantum Circuits
Superconductive quantum circuits (SQCs) comprise quantized energy levels that
may be coupled via microwave electromagnetic fields. Described in this way, one
may draw a close analogy to atoms with internal (electronic) levels coupled by
laser light fields. In this Letter, we present a superconductive analog to
electromagnetically induced transparency (S-EIT) that utilizes SQC designs of
present day experimental consideration. We discuss how S-EIT can be used to
establish macroscopic coherence in such systems and, thereby, utilized as a
sensitive probe of decoherence.Comment: 5 pages, 3 figure
Abundance, distribution, and habitat of leatherback turtles (Dermochelys coriacea) off California, 1990−2003
Leatherback turtles (Dermochelys coriacea) are regularly seen off the U.S. West Coast, where they forage on jellyfish (Scyphomedusae) during summer and fall. Aerial line-transect surveys were conducted in neritic waters (<92 m depth) off central and northern California during 1990−2003, providing the first foraging population estimates for Pacific leatherback turtles. Males and females of about 1.1 to 2.1 m length were observed. Estimated abundance was linked to the Northern Oscillation Index and ranged from 12 (coefficient of variation [CV] =0.75) in 1995 to 379 (CV= 0.23) in 1990, averaging 178 (CV= 0.15). Greatest densities were found off central California, where oceanographic retention areas or upwelling shadows created favorable habitat for leatherback turtle prey. Results from independent telemetry studies have linked leatherback turtles off the U.S. West Coast to one of the two largest remaining Pacific breeding populations, at Jamursba Medi, Indonesia. Nearshore waters off California thus represent an important foraging region for the critically endangered Pacific leatherback turtle
Shock waves in ultracold Fermi (Tonks) gases
It is shown that a broad density perturbation in a Fermi (Tonks) cloud takes
a shock wave form in the course of time evolution. A very accurate analytical
description of shock formation is provided. A simple experimental setup for the
observation of shocks is discussed.Comment: approx. 4 pages&figures, minor corrections^2, to be published as a
Letter in Journal of Physics
Electromagnetically induced transparency in superconducting quantum circuits : Effects of decoherence, tunneling and multi-level cross-talk
We explore theoretically electromagnetically-induced transparency (EIT) in a
superconducting quantum circuit (SQC). The system is a persistent-current flux
qubit biased in a configuration. Previously [Phys. Rev. Lett. 93,
087003 (2004)], we showed that an ideally-prepared EIT system provides a
sensitive means to probe decoherence. Here, we extend this work by exploring
the effects of imperfect dark-state preparation and specific decoherence
mechanisms (population loss via tunneling, pure dephasing, and incoherent
population exchange). We find an initial, rapid population loss from the
system for an imperfectly prepared dark state. This is followed by a
slower population loss due to both the detuning of the microwave fields from
the EIT resonance and the existing decoherence mechanisms. We find analytic
expressions for the slow loss rate, with coefficients that depend on the
particular decoherence mechanisms, thereby providing a means to probe,
identify, and quantify various sources of decoherence with EIT. We go beyond
the rotating wave approximation to consider how strong microwave fields can
induce additional off-resonant transitions in the SQC, and we show how these
effects can be mitigated by compensation of the resulting AC Stark shifts
Validating material information for stochastic crash simulation
This paper describes the steps in validating material information for stochastic simulation using a quasi static tensile test experiment Sources of physical noise usually present in a testing environment such as variation in material properties, geometry and boundary conditions are included as inputs to finite element models
- …
