61,466 research outputs found
Search and the Path-Dependency of Trade.
This paper investigates the implications of imperfect information and matching/searching for international trade theory. I develop an illustrative model where firms find such partners by a search through successive matches. The consequences include linking today's import demand patterns to past changes in costs, protection and interest rates. Today's policy decisions will likewise affect future trade. Trade diversion from a preferential trading agreement may well persist as informational diversion well after the preferential agreement has been scrapped. This has important implications for the timing of trade liberalisation.Trade, Protection, Search, Outsourcing.
Geometry definition and grid generation for a complete fighter aircraft
Recent advances in computing power and numerical solution procedures have enabled computational fluid dynamicists to attempt increasingly difficult problems. In particular, efforts are focusing on computations of complex three-dimensional flow fields about realistic aerodynamic bodies. To perform such computations, a very accurate and detailed description of the surface geometry must be provided, and a three-dimensional grid must be generated in the space around the body. The geometry must be supplied in a format compatible with the grid generation requirements, and must be verified to be free of inconsistencies. This paper presents a procedure for performing the geometry definition of a fighter aircraft that makes use of a commercial computer-aided design/computer-aided manufacturing system. Furthermore, visual representations of the geometry are generated using a computer graphics system for verification of the body definition. Finally, the three-dimensional grids for fighter-like aircraft are generated by means of an efficient new parabolic grid generation method. This method exhibits good control of grid quality
Cell volume regulation in the proximal tubule of rat kidney proximal tubule cell volume regulation
We developed a dynamic model of a rat proximal convoluted tubule cell in order to investigate cell volume regulation mechanisms in this nephron segment. We examined whether regulatory volume decrease (RVD), which follows exposure to a hyposmotic peritubular solution, can be achieved solely via stimulation of basolateral K^+ and Cl^− channels and Na^+–HCO₃^− cotransporters. We also determined whether regulatory volume increase (RVI), which follows exposure to a hyperosmotic peritubular solution under certain conditions, may be accomplished by activating basolateral Na^+/H^+ exchangers. Model predictions were in good agreement with experimental observations in mouse proximal tubule cells assuming that a 10% increase in cell volume induces a fourfold increase in the expression of basolateral K+ and Cl− channels and Na+–HCO₃^− cotransporters. Our results also suggest that in response to a hyposmotic challenge and subsequent cell swelling, Na^+–HCO₃^− cotransporters are more efficient than basolateral K^+ and Cl^− channels at lowering intracellular osmolality and reducing cell volume. Moreover, both RVD and RVI are predicted to stabilize net transcellular Na^+ reabsorption, that is, to limit the net Na^+ flux decrease during a hyposmotic challenge or the net Na^+ flux increase during a hyperosmotic challenge.This research was supported by the National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, via grant R01DK106102 to AT Layton. (R01DK106102 - National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases)Accepted manuscrip
Effect of Land Application of Poultry Waste on Pesticide Loss
The poultry industry in Arkansas is a large, concentrated, growing industry that produces a high volume of fecal waste. Most of this waste is surface applied as pasture fertilizer. Pesticides are commonly used in the poultry industry for fly and litter beetle contro land are often a component of the surface-applied poultry waste. No information exists in the scientific literature regarding the transport of this pesticide component to nearby water supplies.Our research focused on cyromazine, a feed-through larvicide used to control flies in caged-layer hen houses. Tetrachlorvinphos and carbaryl are also used in poultry waste, but these pesticides have a relatively low solubility in water and rapid decomposition rate. Cyromazine, however, is highly soluble and stable in water. Since it may be readily washed from the pasture by heavy rainfall and may persist in surface and soil water, cyromazine appears to be potentially a much greater long-term threat to water quality than either carbaryl or tetrachlorvinphos. Therefore, the objective of this investigation was to examine the extent of cyromazine loss as a result of land application of caged layer manure. To quantify cyromazine loss from pasture plots treated with caged layer manure,research was conducted at the University of Arkansas Agricultural Experiment Station at Fayetteville. Plots of uniform slope were bordered to isolate surface runoff, fitted with runoff collectors, and established in fescue pasture. Suction lysimeters were placed at the 60 cm depth to sample soil water in the unsaturated zone. Caged layer manure was analyzed for cyromazine concentration and applied to the plots at three different rates. Rainfall was applied by simulator at two intensities. Surface runoff and lysimeter samples were measured and analyzed for cyromazine concentration. A solid phase extraction procedure was used to separate the cyromazine from the water samples and analysis was done by high performance liquid chromatography (HPLC). Results showed that a heavier manure application increased both the runoff and cyromazine concentration. Higher rainfall intensity also increased total cyromazine loss in the runoff, but provided enough runoff volume to decrease the cyromazine concentration. Soil water from the unsaturated zone was monitored for a year following the manure application, but neither cyromazine nor its metabolite, melamine, were detected
Evaluation of the Water Quality Impacts of Land Application of Poultry Litter
Evaluating the effect of land application of animal waste on water quality is fraught with inherent variability due to differing infiltration rates, slope, rainfall intensity and etc . Simulated rainfall technology has been used in erosion research for decades. Generally, this technology is used on plots of sufficient size (25 x 5 m) to develop rill and interrill erosion. The object of this investigation was to adapt and modify existing rainfall simulation technology used in soil erosion research for use in evaluating water quality impacts of land application of animal waste, and to test, evaluate and demonstrate it\u27s scientific validity. State of the art simulation technology was obtained from the National Soil Erosion Research Laboratory located on the campus of Purdue University. The technology was scaled (2 x 6 m) and modified to fit into field research programs having several treatments and rep 1 i cated p 1 ots . The technology was shown to meet specification needed to produce the required raindrop size and velocity, flexibility in storm intensity, while maintaining uniformity(\u3e 0.8). Equally important, the unit is portable and fits well into labor intensive runoff work requiring replication of a variety of treatments
Short and Long Run Decomposition of OECD Wage Inequality Changes
This paper focuses on the decomposition of increased wage inequality in OECD countries into the component factors of trade surges in low wage products and technological change. It argues that if the observed wage inequality response to price and technology shocks represents a short run response in which factors and output have not adjusted fully across industries, then decomposition analysis is substantially altered relative to a long-run factors mobile world. This applies either when one type of labour has mobility costs or where there is an additional, sectorally immobile factor. Only small departures from the fully mobile model can greatly change decompositions. Previous general equilibrium based studies have assumed a long-run full mobility response, when this may not be the case, and may consequently have drawn incorrect conclusions.Trade, wages, technology, inequality.
Adaptive changes in GFR, tubular morphology, and transport in subtotal nephrectomized kidneys: modeling and analysis
Removal of renal mass stimulates anatomical and functional adaptations in the surviving nephrons, including elevations in single-nephron glomerular filtration rate (SNGFR) and tubular hypertrophy. A goal of this study is to assess the extent to which the concomitant increases in filtered load and tubular transport capacity preserve homeostasis of water and salt. To accomplish that goal, we developed computational models to simulate solute transport and metabolism along nephron populations in a uninephrectomized (UNX) rat and a 5/6-nephrectomized (5/6-NX) rat. Model simulations indicate that nephrectomy-induced SNGFR increase and tubular hypertrophy go a long way to normalize excretion, but alone are insufficient to fully maintain salt balance. We then identified increases in the protein density of Na+-K+-ATPase, Na+-K+-2Cl- cotransporter, Na+-Cl- cotransporter, and epithelial Na+ channel, such that the UNX and 5/6-NX models predict urine flow and urinary Na+ and K+ excretions that are similar to sham levels. The models predict that, in the UNX and 5/6-NX kidneys, fractional water and salt reabsorption is similar to sham along the initial nephron segments (i.e., from the proximal tubule to the distal convoluted tubule), with a need to further reduce Na+ reabsorption and increase K+ secretion primarily along the connecting tubules and collecting ducts to achieve balance. Additionally, the models predict that, given the substantially elevated filtered and thus transport load among each of the surviving nephrons, oxygen consumption per nephron segment in a UNX or 5/6-NX kidney increases substantially. But due to the reduced nephron population, whole animal renal oxygen consumption is lower. The efficiency of tubular Na+ transport in the UNX and 5/6-NX kidneys is predicted to be similar to sham.This research was supported by the Department of Veterans Affairs (to V. Vallon) and by the National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases Grants R01-DK-56248 (to V. Vallon), R01-DK-106102 (A. T. Layton and V. Vallon), and the University of Alabama at Birmingham/ University of California San Diego O'Brien Center for Acute Kidney Injury Research NIH-P30-DK-079337 (to V. Vallon). (Department of Veterans Affairs; R01-DK-56248 - National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases; R01-DK-106102 - National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases; NIH-P30-DK-079337 - University of Alabama at Birmingham/ University of California San Diego O'Brien Center for Acute Kidney Injury Research)Accepted manuscrip
Scaling Properties of Paths on Graphs
Let be a directed graph on finitely many vertices and edges, and assign a
positive weight to each edge on . Fix vertices and and consider the
set of paths that start at and end at , self-intersecting in any number
of places along the way. For each path, sum the weights of its edges, and then
list the path weights in increasing order. The asymptotic behaviour of this
sequence is described, in terms of the structure and type of strongly connected
components on the graph. As a special case, for a Markov chain the asymptotic
probability of paths obeys either a power law scaling or a weaker type of
scaling, depending on the structure of the transition matrix. This generalizes
previous work by Mandelbrot and others, who established asymptotic power law
scaling for special classes of Markov chains.Comment: 23 pages, 2 figure
- …
