1,263 research outputs found

    Generalized Qualification and Qualification Levels for Spectral Regularization Methods

    Get PDF
    The concept of qualification for spectral regularization methods for inverse ill-posed problems is strongly associated to the optimal order of convergence of the regularization error. In this article, the definition of qualification is extended and three different levels are introduced: weak, strong and optimal. It is shown that the weak qualification extends the definition introduced by Mathe and Pereverzev in 2003, mainly in the sense that the functions associated to orders of convergence and source sets need not be the same. It is shown that certain methods possessing infinite classical qualification, e.g. truncated singular value decomposition (TSVD), Landweber's method and Showalter's method, also have generalized qualification leading to an optimal order of convergence of the regularization error. Sufficient conditions for a SRM to have weak qualification are provided and necessary and sufficient conditions for a given order of convergence to be strong or optimal qualification are found. Examples of all three qualification levels are provided and the relationships between them as well as with the classical concept of qualification and the qualification introduced by Mathe and Perevezev are shown. In particular, spectral regularization methods having extended qualification in each one of the three levels and having zero or infinite classical qualification are presented. Finally several implications of this theory in the context of orders of convergence, converse results and maximal source sets for inverse ill-posed problems, are shown.Comment: 20 pages, 1 figur

    Regulatory Framework for Next-Generation Access Networks Across Europe

    Full text link

    Global Saturation of Regularization Methods for Inverse Ill-Posed Problems

    Full text link
    In this article the concept of saturation of an arbitrary regularization method is formalized based upon the original idea of saturation for spectral regularization methods introduced by A. Neubauer in 1994. Necessary and sufficient conditions for a regularization method to have global saturation are provided. It is shown that for a method to have global saturation the total error must be optimal in two senses, namely as optimal order of convergence over a certain set which at the same time, must be optimal (in a very precise sense) with respect to the error. Finally, two converse results are proved and the theory is applied to find sufficient conditions which ensure the existence of global saturation for spectral methods with classical qualification of finite positive order and for methods with maximal qualification. Finally, several examples of regularization methods possessing global saturation are shown.Comment: 29 page

    Elastic-Net Regularization: Error estimates and Active Set Methods

    Full text link
    This paper investigates theoretical properties and efficient numerical algorithms for the so-called elastic-net regularization originating from statistics, which enforces simultaneously l^1 and l^2 regularization. The stability of the minimizer and its consistency are studied, and convergence rates for both a priori and a posteriori parameter choice rules are established. Two iterative numerical algorithms of active set type are proposed, and their convergence properties are discussed. Numerical results are presented to illustrate the features of the functional and algorithms

    Beyond convergence rates: Exact recovery with Tikhonov regularization with sparsity constraints

    Full text link
    The Tikhonov regularization of linear ill-posed problems with an 1\ell^1 penalty is considered. We recall results for linear convergence rates and results on exact recovery of the support. Moreover, we derive conditions for exact support recovery which are especially applicable in the case of ill-posed problems, where other conditions, e.g. based on the so-called coherence or the restricted isometry property are usually not applicable. The obtained results also show that the regularized solutions do not only converge in the 1\ell^1-norm but also in the vector space 0\ell^0 (when considered as the strict inductive limit of the spaces Rn\R^n as nn tends to infinity). Additionally, the relations between different conditions for exact support recovery and linear convergence rates are investigated. With an imaging example from digital holography the applicability of the obtained results is illustrated, i.e. that one may check a priori if the experimental setup guarantees exact recovery with Tikhonov regularization with sparsity constraints

    Parameter identification in a semilinear hyperbolic system

    Get PDF
    We consider the identification of a nonlinear friction law in a one-dimensional damped wave equation from additional boundary measurements. Well-posedness of the governing semilinear hyperbolic system is established via semigroup theory and contraction arguments. We then investigte the inverse problem of recovering the unknown nonlinear damping law from additional boundary measurements of the pressure drop along the pipe. This coefficient inverse problem is shown to be ill-posed and a variational regularization method is considered for its stable solution. We prove existence of minimizers for the Tikhonov functional and discuss the convergence of the regularized solutions under an approximate source condition. The meaning of this condition and some arguments for its validity are discussed in detail and numerical results are presented for illustration of the theoretical findings

    The equivalence of fluctuation scale dependence and autocorrelations

    Full text link
    We define optimal per-particle fluctuation and correlation measures, relate fluctuations and correlations through an integral equation and show how to invert that equation to obtain precise autocorrelations from fluctuation scale dependence. We test the precision of the inversion with Monte Carlo data and compare autocorrelations to conditional distributions conventionally used to study high-ptp_t jet structure.Comment: 10 pages, 9 figures, proceedings, MIT workshop on correlations and fluctuations in relativistic nuclear collision

    Necessary conditions for variational regularization schemes

    Full text link
    We study variational regularization methods in a general framework, more precisely those methods that use a discrepancy and a regularization functional. While several sets of sufficient conditions are known to obtain a regularization method, we start with an investigation of the converse question: How could necessary conditions for a variational method to provide a regularization method look like? To this end, we formalize the notion of a variational scheme and start with comparison of three different instances of variational methods. Then we focus on the data space model and investigate the role and interplay of the topological structure, the convergence notion and the discrepancy functional. Especially, we deduce necessary conditions for the discrepancy functional to fulfill usual continuity assumptions. The results are applied to discrepancy functionals given by Bregman distances and especially to the Kullback-Leibler divergence.Comment: To appear in Inverse Problem
    corecore