1,945 research outputs found
Influence of reheating on the trispectrum and its scale dependence
We study the evolution of the non-linear curvature perturbation during perturbative reheating, and hence how observables evolve to their final values which we may compare against observations. Our study includes the evolution of the two trispectrum parameters, \gnl and \taunl, as well as the scale dependence of both \fnl and \taunl. In general the evolution is significant and must be taken into account, which means that models of multifield inflation cannot be compared to observations without specifying how the subsequent reheating takes place. If the trispectrum is large at the end of inflation, it normally remains large at the end of reheating. In the classes of models we study, it is very hard to generate \taunl\gg\fnl^2, regardless of the decay rates of the fields. Similarly, for the classes of models in which \gnl\simeq\taunl during slow--roll inflation, we find the relation typically remains valid during reheating. Therefore it is possible to observationally test such classes of models without specifying the parameters of reheating, even though the individual observables are sensitive to the details of reheating. It is hard to generate an observably large \gnl however. The runnings, \nfnl and \ntaunl, tend to satisfy a consistency relation \ntaunl=(3/2)\nfnl, but are in general too small to be observed for the class of models considered regardless of reheating timescale
Time-domain THz spectroscopy reveals coupled protein-hydration dielectric response in solutions of native and fibrils of human lyso-zyme
Here we reveal details of the interaction between human lysozyme proteins,
both native and fibrils, and their water environment by intense terahertz time
domain spectroscopy. With the aid of a rigorous dielectric model, we determine
the amplitude and phase of the oscillating dipole induced by the THz field in
the volume containing the protein and its hydration water. At low
concentrations, the amplitude of this induced dipolar response decreases with
increasing concentration. Beyond a certain threshold, marking the onset of the
interactions between the extended hydration shells, the amplitude remains fixed
but the phase of the induced dipolar response, which is initially in phase with
the applied THz field, begins to change. The changes observed in the THz
response reveal protein-protein interactions me-diated by extended hydration
layers, which may control fibril formation and may have an important role in
chemical recognition phenomena
Implications of the cosmic microwave background power asymmetry for the early universe
Observations of the microwave background fluctuations suggest a
scale-dependent amplitude asymmetry of roughly 2.5 sigma significance.
Inflationary explanations for this 'anomaly' require non-Gaussian fluctuations
which couple observable modes to those on much larger scales. In this Letter we
describe an analysis of such scenarios which significantly extends previous
treatments. We identify the non-Gaussian 'response function' which
characterizes the asymmetry, and show that it is non-trivial to construct a
model which yields a sufficient amplitude: many independent fine tunings are
required, often making such models appear less likely than the anomaly they
seek to explain. We present an explicit model satisfying observational
constraints and determine for the first time how large its bispectrum would
appear to a Planck-like experiment. Although this model is merely illustrative,
we expect it is a good proxy for the bispectrum in a sizeable class of models
which generate a scale-dependent response using a large eta parameter.Comment: 5 pages. v2: Minor changes to match version published in Phys. Rev.
Electron Neutrino Mass Measurement by Supernova Neutrino Bursts and Implications on Hot Dark Matter
We present a new strategy for measuring the electron neutrino mass (\mnue)
by future detection of a Galactic supernova in large underground detectors such
as the Super-Kamiokande (SK). This method is nearly model-independent and one
can get a mass constraint in a straightforward way from experimental data
without specifying any model parameters for profiles of supernova neutrinos. We
have tested this method using virtual data generated from a numerical model of
supernova neutrino emission by realistic Monte-Carlo simulations of the SK
detection. It is shown that this method is sensitive to \mnue of 3 eV
for a Galactic supernova, and this range is as low as the prediction of the
cold+hot dark matter scenario with a nearly degenerate mass hierarchy of
neutrinos, which is consistent with the current observations of solar and
atmospheric neutrino anomalies and density fluctuations in the universe.Comment: 4 pages including 1 figure, accepted by Phys. Rev. Let
Cosmology of Axions and Moduli: A Dynamical Systems Approach
This paper is concerned with string cosmology and the dynamics of multiple
scalar fields in potentials that can become negative, and their features as
(Early) Dark Energy models. Our point of departure is the "String Axiverse", a
scenario that motivates the existence of cosmologically light axion fields as a
generic consequence of string theory. We couple such an axion to its
corresponding modulus. We give a detailed presentation of the rich cosmology of
such a model, ranging from the setting of initial conditions on the fields
during inflation, to the asymptotic future. We present some simplifying
assumptions based on the fixing of the axion decay constant , and on the
effective field theory when the modulus trajectory is adiabatic, and find the
conditions under which these assumptions break down. As a by-product of our
analysis, we find that relaxing the assumption of fixed leads to the
appearance of a new meta-stable de-Sitter region for the modulus without the
need for uplifting by an additional constant. A dynamical systems analysis
reveals the existence of many fixed point attractors, repellers and saddle
points, which we analyse in detail. We also provide geometric interpretations
of the phase space. The fixed points can be used to bound the couplings in the
model. A systematic scan of certain regions of parameter space reveals that the
future evolution of the universe in this model can be rich, containing multiple
epochs of accelerated expansion.Comment: 27 pages, 12 figures, comments welcome, v2 minor correction
Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: light scattering by a dual photonic structure
Helicoidal architectures comprising various polysaccharides, such as chitin and cellulose, have been reported in biological systems. In some cases, these architectures exhibit stunning optical properties analogous to ordered cholesteric liquid crystal phases. In this work, we characterize the circularly polarized reflectance and optical scattering from the cuticle of the beetle Chalcothea smaragdina (Coleoptera: Scarabaeidae: Cetoniinae) using optical experiments, simulations and structural analysis. The selective reflection of left-handed circularly polarized light is attributed to a Bouligand-type helicoidal morphology within the beetle's exocuticle. Using electron microscopy to inform electromagnetic simulations of this anisotropic stratified medium, the inextricable connection between the colour appearance of C. smaragdina and the periodicity of its helicoidal rotation is shown. A close agreement between the model and the measured reflectance spectra is obtained. In addition, the elytral surface of C. smaragdina possesses a blazed diffraction grating-like surface structure, which affects the diffuse appearance of the beetle's reflected colour, and therefore potentially enhances crypsis among the dense foliage of its rainforest habitat
Modular Cosmology, Thermal Inflation, Baryogenesis and Predictions for Particle Accelerators
Modular cosmology is plagued by overproduction of unwanted relics, gravitinos
and especially moduli, at relatively low energy scales. Thermal inflation
provides a compelling solution to this moduli problem, but invalidates most
baryogenesis scenarios. We propose a simple model in which the MSSM plus
neutrino mass term is supplemented by a minimal flaton sector to
drive the thermal inflation, and make two crucial assumptions: the flaton
vacuum expectation value generates the -term of the MSSM and . The second assumption is particularly interesting in that it
violates a well known constraint, implying that there exists a nearby deep
non-MSSM vacuum, and provides a clear signature of our model which can be
tested at future particle accelerators. We show that our model leads to thermal
inflation followed by Affleck-Dine leptogenensis along the flat
direction. A key feature of our leptogenesis scenario is that the flat
direction is also induced to temporarily acquire a large value, playing a
crucial role in the leptogenesis, as well as dynamically shielding the field
configuration from the deep non-MSSM minimum, ensuring that the fields relax
into our MSSM vacuum.Comment: v3; 19 pages, 3 figures; added a reference for section
Preheating and Affleck-Dine leptogenesis after thermal inflation
Previously, we proposed a model of low energy Affleck-Dine leptogenesis in
the context of thermal inflation. The lepton asymmetry is generated at the end
of thermal inflation, which occurs at a relatively low energy scale with the
Hubble parameter somewhere in the range 1 \keV \lesssim H \lesssim 1 \MeV.
Thus Hubble damping will be ineffective in bringing the Affleck-Dine field into
the lepton conserving region near the origin, leaving the possibility that the
lepton number could be washed out. Previously, we suggested that preheating
could damp the amplitude of the Affleck-Dine field allowing conservation of the
lepton number. In this paper, we demonstrate numerically that preheating does
efficiently damp the amplitude of the Affleck-Dine field and that the lepton
number is conserved as the result. In addition to demonstrating a crucial
aspect of our model, it also opens the more general possibility of low energy
Affleck-Dine baryogenesis.Comment: 38 pages, 17 figure
Protein supplementation and dietary behaviours of resistance trained men and women attending commercial gyms: a comparative study between the city centre and the suburbs of Palermo, Italy
Background: It is anecdotally recognized that commercial gym users assume supplements in order to improve performance or health. However, dietary behaviours of people and athletes attending commercial gyms have been poorly studied. The exact amount and frequency of dietary supplements consumption are still needed to be investigated. The main purpose of this study is to understand the quantity and quality of food intake, as well as dietary supplementation in people attending commercial gyms. Secondly to compare the city centre and the suburbs of Palermo, Italy.
Methods: A face-to-face questionnaire was administered to 561 subjects, 207 from the city centre (CC) and 354 from the suburbs (SB) of Palermo, Italy. Frequency of protein supplements use and association with dietary behaviours were investigated. Subsequently, the frequency distribution was used for demographic assessment.
Results: Frequency of protein consumption was similar in both groups (30% for CC and 28.8% for SB). Males show greater consumption percentages than females (30.5% in males and 6.9% in females). Milk and chicken are the most frequently consumed foods. Data show that non-supplement users (NSU) consume significantly more snacks and bakery products than supplement users (SU) (P < 0.001). While, SU consume significantly higher quantities of vegetables, nuts, fresh fish, eggs and canned tuna (P < 0.001). SU consume less low protein food and higher protein foods than NSU. No differences were found between CC and SB.
Conclusions: Protein consumption among commercial gym users is 30% for the CC and 28.8% for the SB. Significant differences were found between CC and SB females, underlining an interesting discrepancy, indicating to dietary supplement industries regarding regional implications. Subjects that use protein supplements also consume larger quantities of high protein food compared to NSU. NSU also eat higher proportions of unhealthy food compared to S
- …
