535 research outputs found
Solar neutrinos and the influence of radiative opacities on solar models
Use of new radiative opacities based on the hot Thomas-Fermi model of the atom yields a predicted solar neutrino flux which is still considerably larger than the flux observed in Davis's Cl-37 experiment
An efficient scheme for numerical simulations of the spin-bath decoherence
We demonstrate that the Chebyshev expansion method is a very efficient
numerical tool for studying spin-bath decoherence of quantum systems. We
consider two typical problems arising in studying decoherence of quantum
systems consisting of few coupled spins: (i) determining the pointer states of
the system, and (ii) determining the temporal decay of quantum oscillations. As
our results demonstrate, for determining the pointer states, the
Chebyshev-based scheme is at least a factor of 8 faster than existing
algorithms based on the Suzuki-Trotter decomposition. For the problems of
second type, the Chebyshev-based approach has been 3--4 times faster than the
Suzuki-Trotter-based schemes. This conclusion holds qualitatively for a wide
spectrum of systems, with different spin baths and different Hamiltonians.Comment: 8 pages (RevTeX), 3 EPS figure
Evolution and Nucleosynthesis of Zero Metal Intermediate Mass Stars
New stellar models with mass ranging between 4 and 8 Mo, Z=0 and Y=0.23 are
presented. The models have been evolved from the pre Main Sequence up to the
Asymptotic Giant Branch (AGB). At variance with previous claims, we find that
these updated stellar models do experience thermal pulses in the AGB phase. In
particular we show that: a) in models with mass larger than 6 Mo, the second
dredge up is able to raise the CNO abundance in the envelope enough to allow a
"normal" AGB evolution, in the sense that the thermal pulses and the third
dredge up settle on; b) in models of lower mass, the efficiency of the CNO
cycle in the H-burning shell is controlled by the carbon produced locally via
the 3alpha reactions. Nevertheless the He-burning shell becomes thermally
unstable after the early AGB. The expansion of the overlying layers induced by
these weak He-shell flashes is not sufficient by itself to allow a deep
penetration of the convective envelope. However, immediately after that, the
maximum luminosity of the He flash is attained and a convective shell
systematically forms at the base of the H-rich envelope. The innermost part of
this convective shell probably overlaps the underlying C-rich region left by
the inter-shell convection during the thermal pulse, so that fresh carbon is
dredged up in a "hot" H-rich environment and a H flash occurs. This flash
favours the expansion of the outermost layers already started by the weak
thermal pulse and a deeper penetration of the convective envelope takes place.
Then, the carbon abundance in the envelope rises to a level high enough that
the further evolution of these models closely resembles that of more metal rich
AGB stars. These stars provide an important source of primary carbon and
nitrogen.Comment: 28 pages, 5 tables and 17 figures. Accepted for publication in Ap
Quantum Dynamics of Spin Wave Propagation Through Domain Walls
Through numerical solution of the time-dependent Schrodinger equation, we
demonstrate that magnetic chains with uniaxial anisotropy support stable
structures, separating ferromagnetic domains of opposite magnetization. These
structures, domain walls in a quantum system, are shown to remain stable if
they interact with a spin wave. We find that a domain wall transmits the
longitudinal component of the spin excitations only. Our results suggests that
continuous, classical spin models described by LLG equation cannot be used to
describe spin wave-domain wall interaction in microscopic magnetic systems
Origin of the Canonical Ensemble: Thermalization with Decoherence
We solve the time-dependent Schrodinger equation for the combination of a
spin system interacting with a spin bath environment. In particular, we focus
on the time development of the reduced density matrix of the spin system. Under
normal circumstances we show that the environment drives the reduced density
matrix to a fully decoherent state, and furthermore the diagonal elements of
the reduced density matrix approach those expected for the system in the
canonical ensemble. We show one exception to the normal case is if the spin
system cannot exchange energy with the spin bath. Our demonstration does not
rely on time-averaging of observables nor does it assume that the coupling
between system and bath is weak. Our findings show that the canonical ensemble
is a state that may result from pure quantum dynamics, suggesting that quantum
mechanics may be regarded as the foundation of quantum statistical mechanics.Comment: 12 pages, 4 figures, accepted for publication by J. Phys. Soc. Jp
An Assessment of Dynamical Mass Constraints on Pre-Main Sequence Evolutionary Tracks
[abridged] We have assembled a database of stars having both masses
determined from measured orbital dynamics and sufficient spectral and
photometric information for their placement on a theoretical HR diagram. Our
sample consists of 115 low mass (M < 2.0 Msun) stars, 27 pre-main sequence and
88 main sequence. We use a variety of available pre-main sequence evolutionary
calculations to test the consistency of predicted stellar masses with
dynamically determined masses. Despite substantial improvements in model
physics over the past decade, large systematic discrepancies still exist
between empirical and theoretically derived masses. For main-sequence stars,
all models considered predict masses consistent with dynamical values above 1.2
Msun, some models predict consistent masses at solar or slightly lower masses,
and no models predict consistent masses below 0.5 Msun but rather all models
systematically under-predict such low masses by 5-20%. The failure at low
masses stems from the poor match of most models to the empirical main-sequence
below temperatures of 3800 K where molecules become the dominant source of
opacity and convection is the dominant mode of energy transport. For the
pre-main sequence sample we find similar trends. There is generally good
agreement between predicted and dynamical masses above 1.2 Msun for all models.
Below 1.2 Msun and down to 0.3 Msun (the lowest mass testable) most
evolutionary models systematically under-predict the dynamically determined
masses by 10-30% on average with the Lyon group models (e.g. Baraffe et al.
1998) predicting marginally consistent masses *in the mean* though with large
scatter.Comment: accepted for publication in ApJ (2004
First Stars. I. Evolution without mass loss
The first generation of stars was formed from primordial gas. Numerical
simulations suggest that the first stars were predominantly very massive, with
typical masses M > 100 Mo. These stars were responsible for the reionization of
the universe, the initial enrichment of the intergalactic medium with heavy
elements, and other cosmological consequences. In this work, we study the
structure of Zero Age Main Sequence stars for a wide mass and metallicity range
and the evolution of 100, 150, 200, 250 and 300 Mo galactic and pregalactic Pop
III very massive stars without mass loss, with metallicity Z=10E-6 and 10E-9,
respectively. Using a stellar evolution code, a system of 10 equations together
with boundary conditions are solved simultaneously. For the change of chemical
composition, which determines the evolution of a star, a diffusion treatment
for convection and semiconvection is used. A set of 30 nuclear reactions are
solved simultaneously with the stellar structure and evolution equations.
Several results on the main sequence, and during the hydrogen and helium
burning phases, are described. Low metallicity massive stars are hotter and
more compact and luminous than their metal enriched counterparts. Due to their
high temperatures, pregalactic stars activate sooner the triple alpha reaction
self-producing their own heavy elements. Both galactic and pregalactic stars
are radiation pressure dominated and evolve below the Eddington luminosity
limit with short lifetimes. The physical characteristics of the first stars
have an important influence in predictions of the ionizing photon yields from
the first luminous objects; also they develop large convective cores with
important helium core masses which are important for explosion calculations.Comment: 17 pages, 24 figures, 2 table
Mesoamerican Reef Spawning Aggregations Help Maintain Fish Population: A Review of Connectivity Research and Priorities for Science Management
The life history of most marine organisms includes an obligate period of pelagic larval dispersal. Migration to spawning areas and pelagic dispersal is often well beyond the home range of these organisms. Designing marine protected areas to include a broad range of taxa and their various dispersal patterns is an important and daunting challenge. This paper addresses the issue of connectivity for one set of species in a limited geographic area. We focus on transient spawning reef fish within the Mesoamerican Reef and their connectivity. We divide our scientific review into four sections as follows: (1) ecological characterization of transient multi-species reef fish spawning aggregations, (2) oceanographic and biophysical modeling approaches for understanding connectivity, and (3) validation of models with observations. We conclude that the science behind connectivity is advancing rapidly on many fronts, but there are still large gaps, and it is still largely impossible for managers to apply the results of these studies in specific cases. We further recognize that human and political connectivity may be as important for management as the science behind it. Managers, scientists, fishermen, and politicians can and should embrace connectivity as an important factor in regional fisheries and marine biodiversity management. The collaborative design and implementation of networks of marine reserves that include multi-species spawning aggregation sites, critical nursery habitat, and their connectivity, are likely to provide an important contribution to reversing the decline in fisheries throughout the Gulf of Mexico and Caribbean Region
Results and perspectives of the solar axion search with the CAST experiment
The status of the solar axion search with the CERN Axion Solar Telescope
(CAST) will be presented. Recent results obtained by the use of He as a
buffer gas has allowed us to extend our sensitivity to higher axion masses than
our previous measurements with He. With about 1 h of data taking at each of
252 different pressure settings we have scanned the axion mass range 0.39 eV 0.64 eV. From the absence of an excess of x rays when the
magnet was pointing to the Sun we set a typical upper limit on the axion-photon
coupling of g GeV at 95% C.L., the
exact value depending on the pressure setting. CAST published results represent
the best experimental limit on the photon couplings to axions and other similar
exotic particles dubbed WISPs (Weakly Interacting Slim Particles) in the
considered mass range and for the first time the limit enters the region
favored by QCD axion models. Preliminary sensitivities for axion masses up to
1.16 eV will also be shown reaching mean upper limits on the axion-photon
coupling of g GeV at 95% C.L.
Expected sensibilities for the extension of the CAST program up to 2014 will be
presented. Moreover long term options for a new helioscope experiment will be
evoked.Comment: 4 pages, 2 pages, to appear in the proceedings of the 24th Rencontres
de Blois V2 A few affiliations were not corrected in previous version V3
Author adde
Ocean impact on decadal Atlantic climate variability revealed by sea-level observations
Decadal variability is a notable feature of the Atlantic Ocean and the climate of the regions it influences. Prominently, this is manifested in the Atlantic Multidecadal Oscillation (AMO) in sea surface temperatures. Positive (negative) phases of the AMO coincide with warmer (colder) North Atlantic sea surface temperatures. The AMO is linked with decadal climate fluctuations, such as Indian and Sahel rainfall1, European summer precipitation2, Atlantic hurricanes3 and variations in global temperatures4. It is widely believed that ocean circulation drives the phase changes of the AMO by controlling ocean heat content5. However, there are no direct observations of ocean circulation of sufficient length to support this, leading to questions about whether the AMO is controlled from another source6. Here we provide observational evidence of the widely hypothesized link between ocean circulation and the AMO. We take a new approach, using sea level along the east coast of the United States to estimate ocean circulation on decadal timescales. We show that ocean circulation responds to the first mode of Atlantic atmospheric forcing, the North Atlantic Oscillation, through circulation changes between the subtropical and subpolar gyres—the intergyre region7. These circulation changes affect the decadal evolution of North Atlantic heat content and, consequently, the phases of the AMO. The Atlantic overturning circulation is declining8 and the AMO is moving to a negative phase. This may offer a brief respite from the persistent rise of global temperatures4, but in the coupled system we describe, there are compensating effects. In this case, the negative AMO is associated with a continued acceleration of sea-level rise along the northeast coast of the United States9, 10
- …
