31,175 research outputs found
Recommended from our members
The role of the ventral intraparietal area (VIP/pVIP) in parsing optic flow into visual motion caused by self-motion and visual motion produced by object-motion
Retinal image motion is a composite signal that contains information about two behaviourally significant factors: self-motion and the movement of environmental objects. It is thought that the brain separates the two relevant signals, and although multiple brain regions have been identified that respond selectively to the composite optic flow signal, which brain region(s) perform the parsing process remains unknown. Here, we present original evidence that the putative human ventral intraparietal area (pVIP), a region known to receive optic flow signals as well as independent self-motion signals from other sensory modalities, plays a critical role in the parsing process and acts to isolate object-motion. We localised pVIP using its multisensory response profile, and then tested its relative responses to simulated object-motion and self-motion stimuli; results indicated that responses were much stronger in pVIP to stimuli that specified object-motion. We report two further observations that will be significant for the future direction of research in this area; firstly, activation in pVIP was suppressed by distant stationary objects compared to the absence of objects or closer objects. Secondly, we describe several other brain regions that share with pVIP selectivity for visual object-motion over visual self-motion as well as a multisensory response
Satellite versus ground-based estimates of burned area: a comparison between MODIS based burned area and fire agency reports over North America in 2007
North American wildfire management teams routinely assess burned area on site during firefighting campaigns; meanwhile, satellite observations provide systematic and global burned-area data. Here we compare satellite and ground-based daily burned area for wildfire events for selected large fires across North America in 2007 on daily timescales. In a sample of 26 fires across North America, we found the Global Fire Emissions Database Version 4 (GFED4) estimated about 80% of the burned area logged in ground-based Incident Status Summary (ICS-209) over 8-day analysis windows. Linear regression analysis found a slope between GFED and ICS-209 of 0.67 (with R = 0.96). The agreement between these data sets was found to degrade at short timescales (from R = 0.81 for 4-day to R = 0.55 for 2-day). Furthermore, during large burning days (> 3000 ha) GFED4 typically estimates half of the burned area logged in the ICS-209 estimates
Recommended from our members
An fMRI study of parietal cortex involvement in the visual guidance of locomotion
Locomoting through the environment typically involves anticipating impending changes in heading trajectory in addition to maintaining the current direction of travel. We explored the neural systems involved in the “far road” and “near road” mechanisms proposed by Land and Horwood (1995) using simulated forward or backward travel where participants were required to gauge their current direction of travel (rather than directly control it). During forward egomotion, the distant road edges provided future path information, which participants used to improve their heading judgments. During backward egomotion, the road edges did not enhance performance because they no longer provided prospective information. This behavioral dissociation was reflected at the neural level, where only simulated forward travel increased activation in a region of the superior parietal lobe and the medial intraparietal sulcus. Providing only near road information during a forward heading judgment task resulted in activation in the motion complex. We propose a complementary role for the posterior parietal cortex and motion complex in detecting future path information and maintaining current lane positioning, respectively. (PsycINFO Database Record (c) 2010 APA, all rights reserved
Recommended from our members
Feedback on Academic Essay Writing through pre-Emptive Hints: Moving Towards "Advice for Action"
This paper adopts an “advice for action” approach to feedback in educational practice: addressing how provision of “hints” to participants before they write academic essays can support their understanding and performance in essay-writing tasks. We explored differences in performance by type of hint, and whether there was a transfer of better performance in subsequent essays. Fifty participants were recruited, consisting of eight men and 42 women aged 18-80. Participants were assigned in rotation to four groups, and asked to write two essays. Groups 1 and 3 received hints before Essay 1, whilst Groups 2 and 4 received hints before Essay 2. Groups 1 and 2 received essential hints; Groups 3 and 4 received helpful hints. Essays were marked against set criteria. The results showed that an “advice for action” approach to essay-writing, in the form of hints, can significantly improve writers’ marks. Specifically higher marks were gained for the introduction, conclusion and use of evidence: critical components of “good” academic essays. As the hints given were content-free, this approach has the potential to instantly benefit tutors and students across subject domains and institutions and is informing the development of a technical system that can offer formative feedback as students draft essays
Experimental evidence for radiative attachment in astrochemistry from electron attachment to NCCCCN
Electron attachment to NCCCCN, dicyanoacetylene (2-butynedinitrile), has been observed. Metastable parent anions, NCCCCN_∗, with microsecond or longer lifetimes are formed close to 0 eV electron energy with a cross section of ≥0.25 2. The stability of NCCCCN suggests that radiative attachment to NCCCCN and similar _∗ °A linear carbon chain molecules may be an important mechanism for the formation of negatively charged molecular ions in astrophysical environments. CCCN_ and CN_ fragment anions are formed at ∼3 and ∼6 eV
Recommended from our members
Consumption of cocoa flavanols results in an acute improvement in visual and cognitive functions
A climatically-derived global soil moisture data set for use in the GLAS atmospheric circulation model seasonal cycle experiment
Algorithms for point interpolation and contouring on the surface of the sphere and in Cartesian two-space are developed from Shepard's (1968) well-known, local search method. These mapping procedures then are used to investigate the errors which appear on small-scale climate maps as a result of the all-too-common practice of of interpolating, from irregularly spaced data points to the nodes of a regular lattice, and contouring Cartesian two-space. Using mean annual air temperatures field over the western half of the northern hemisphere is estimated both on the sphere, assumed to be correct, and in Cartesian two-space. When the spherically- and Cartesian-approximted air temperature fields are mapped and compared, the magnitudes (as large as 5 C to 10 C) and distribution of the errors associated with the latter approach become apparent
Alternate methods of applying diffusants to silicon solar cells
Low-melting phosphate and borate glasses were screen printed on silicon wafers and heated to form n and p junctions. Data on surface appearance, sheet resistance and junction depth are presented. Similar data are reported for vapor phase transport from sintered aluminum metaphosphate and boron-containing glass-ceramic solid sources. Simultaneous diffusion of an N(+) layer with screen-printed glass and a p(+) layer with screen-printed Al alloy paste was attempted. No p(+) back surface field formation was achieved. Some good cells were produced but the heating in an endless-belt furnace caused a large scatter in sheet resistance and junction depth for three separate lots of wafers
- …
