1,554 research outputs found

    Delay Induced Excitability

    Get PDF
    We analyse the stochastic dynamics of a bistable system under the influence of time-delayed feedback. Assuming an asymmetric potential, we show the existence of a regime in which the systems dynamic displays excitability by calculating the relevant residence time distributions and correlation times. Experimentally we then observe this behaviour in the polarization dynamics of a vertical cavity surface emitting laser with opto-electronic feedback. Extending these observations to two-dimensional systems with dispersive coupling we finally show numerically that delay induced excitability can lead to the appearance of propagating wave-fronts and spirals.Comment: 5 pages, 6 figure

    Modeling rhythmic patterns in the hippocampus

    Full text link
    We investigate different dynamical regimes of neuronal network in the CA3 area of the hippocampus. The proposed neuronal circuit includes two fast- and two slowly-spiking cells which are interconnected by means of dynamical synapses. On the individual level, each neuron is modeled by FitzHugh-Nagumo equations. Three basic rhythmic patterns are observed: gamma-rhythm in which the fast neurons are uniformly spiking, theta-rhythm in which the individual spikes are separated by quiet epochs, and theta/gamma rhythm with repeated patches of spikes. We analyze the influence of asymmetry of synaptic strengths on the synchronization in the network and demonstrate that strong asymmetry reduces the variety of available dynamical states. The model network exhibits multistability; this results in occurrence of hysteresis in dependence on the conductances of individual connections. We show that switching between different rhythmic patterns in the network depends on the degree of synchronization between the slow cells.Comment: 10 pages, 9 figure

    A propensity criterion for networking in an array of coupled chaotic systems

    Full text link
    We examine the mutual synchronization of a one dimensional chain of chaotic identical objects in the presence of a stimulus applied to the first site. We first describe the characteristics of the local elements, and then the process whereby a global nontrivial behaviour emerges. A propensity criterion for networking is introduced, consisting in the coexistence within the attractor of a localized chaotic region, which displays high sensitivity to external stimuli,and an island of stability, which provides a reliable coupling signal to the neighbors in the chain. Based on this criterion we compare homoclinic chaos, recently explored in lasers and conjectured to be typical of a single neuron, with Lorenz chaos.Comment: 4 pages, 3 figure

    Magnetic Field-Induced Condensation of Triplons in Han Purple Pigment BaCuSi2_2O6_6

    Full text link
    Besides being an ancient pigment, BaCuSi2_2O6_6 is a quasi-2D magnetic insulator with a gapped spin dimer ground state. The application of strong magnetic fields closes this gap creating a gas of bosonic spin triplet excitations called triplons. The topology of the spin lattice makes BaCuSi2_2O6_6 an ideal candidate for studying the Bose-Einstein condensation of triplons as a function of the external magnetic field, which acts as a chemical potential. In agreement with quantum Monte Carlo numerical simulations, we observe a distinct lambda-anomaly in the specific heat together with a maximum in the magnetic susceptibility upon cooling down to liquid Helium temperatures.Comment: published on August 20, 200

    Dynamics of lattice spins as a model of arrhythmia

    Get PDF
    We consider evolution of initial disturbances in spatially extended systems with autonomous rhythmic activity, such as the heart. We consider the case when the activity is stable with respect to very smooth (changing little across the medium) disturbances and construct lattice models for description of not-so-smooth disturbances, in particular, topological defects; these models are modifications of the diffusive XY model. We find that when the activity on each lattice site is very rigid in maintaining its form, the topological defects - vortices or spirals - nucleate a transition to a disordered, turbulent state.Comment: 17 pages, revtex, 3 figure

    Heterogeneous Delays in Neural Networks

    Full text link
    We investigate heterogeneous coupling delays in complex networks of excitable elements described by the FitzHugh-Nagumo model. The effects of discrete as well as of uni- and bimodal continuous distributions are studied with a focus on different topologies, i.e., regular, small-world, and random networks. In the case of two discrete delay times resonance effects play a major role: Depending on the ratio of the delay times, various characteristic spiking scenarios, such as coherent or asynchronous spiking, arise. For continuous delay distributions different dynamical patterns emerge depending on the width of the distribution. For small distribution widths, we find highly synchronized spiking, while for intermediate widths only spiking with low degree of synchrony persists, which is associated with traveling disruptions, partial amplitude death, or subnetwork synchronization, depending sensitively on the network topology. If the inhomogeneity of the coupling delays becomes too large, global amplitude death is induced

    Theory of spiral wave dynamics in weakly excitable media: asymptotic reduction to a kinematic model and applications

    Full text link
    In a weakly excitable medium, characterized by a large threshold stimulus, the free end of an isolated broken plane wave (wave tip) can either rotate (steadily or unsteadily) around a large excitable core, thereby producing a spiral pattern, or retract causing the wave to vanish at boundaries. An asymptotic analysis of spiral motion and retraction is carried out in this weakly excitable large core regime starting from the free-boundary limit of the reaction-diffusion models, valid when the excited region is delimited by a thin interface. The wave description is shown to naturally split between the tip region and a far region that are smoothly matched on an intermediate scale. This separation allows us to rigorously derive an equation of motion for the wave tip, with the large scale motion of the spiral wavefront slaved to the tip. This kinematic description provides both a physical picture and exact predictions for a wide range of wave behavior, including: (i) steady rotation (frequency and core radius), (ii) exact treatment of the meandering instability in the free-boundary limit with the prediction that the frequency of unstable motion is half the primary steady frequency (iii) drift under external actions (external field with application to axisymmetric scroll ring motion in three-dimensions, and spatial or/and time-dependent variation of excitability), and (iv) the dynamics of multi-armed spiral waves with the new prediction that steadily rotating waves with two or more arms are linearly unstable. Numerical simulations of FitzHug-Nagumo kinetics are used to test several aspects of our results. In addition, we discuss the semi-quantitative extension of this theory to finite cores and pinpoint mathematical subtleties related to the thin interface limit of singly diffusive reaction-diffusion models
    corecore