190 research outputs found
The Electrochemical Carbon Nanotube Field-Effect Transistor
We explore the electric-field effect of carbon nanotubes (NTs) in
electrolytes. Due to the large gate capacitance, Fermi energy shifts of order
+/- 1 V can be induced, enabling to tune NTs from p to n-type. Consequently,
large resistance changes are measured. At zero gate voltage the NTs are hole
doped in air with E_F ? 0.3-0.5 eV, corresponding to a doping level of ?
10^{13} cm^{-2}. Hole-doping increases in the electrolyte. This hole doping
(oxidation) is most likely caused by the adsorption of oxygen in air and
cations in the electrolyte
No Far-Infrared-Spectroscopic Gap in Clean and Dirty High-T Superconductors
We report far infrared transmission measurements on single crystal samples
derived from BiSrCaCuO. The impurity scattering rate of
the samples was varied by electron-beam irradiation, 50MeV O ion
irradiation, heat treatment in vacuum, and Y doping. Although substantial
changes in the infrared spectra were produced, in no case was a feature
observed that could be associated with the superconducting energy gap. These
results all but rule out ``clean limit'' explanations for the absence of the
spectroscopic gap in this material, and provide evidence that the
superconductivity in BiSrCaCuO is gapless.Comment: 4 pages and 3 postscript figures attached. REVTEX v3.0. Accepted for
publication in Phys. Rev. Lett. IRDIRT
Magnetic fullerenes inside single-wall carbon nanotubes
C59N magnetic fullerenes were formed inside single-wall carbon nanotubes by
vacuum annealing functionalized C59N molecules encapsulated inside the tubes. A
hindered, anisotropic rotation of C59N was deduced from the temperature
dependence of the electron spin resonance spectra near room temperature.
Shortening of spin-lattice relaxation time, T_1, of C59N indicates a reversible
charge transfer toward the host nanotubes above K. Bound C59N-C60
heterodimers are formed at lower temperatures when C60 is co-encapsulated with
the functionalized C59N. In the 10-300 K range, T_1 of the heterodimer shows a
relaxation dominated by the conduction electrons on the nanotubes
Charge sensing in carbon nanotube quantum dots on microsecond timescales
We report fast, simultaneous charge sensing and transport measurements of
gate-defined carbon nanotube quantum dots. Aluminum radio frequency single
electron transistors (rf-SETs) capacitively coupled to the nanotube dot provide
single-electron charge sensing on microsecond timescales. Simultaneously, rf
reflectometry allows fast measurement of transport through the nanotube dot.
Charge stability diagrams for the nanotube dot in the Coulomb blockade regime
show extended Coulomb diamonds into the high-bias regime, as well as even-odd
filling effects, revealed in charge sensing data.Comment: 4 pages, 4 figure
c-axis electrodynamics of ybco
New measurements of surface impedance in ybco show that the c-axis
penetration depth and conductivity below Tc exhibit behaviour different from
that observed in the planes. The c-axis penetration depth never has the linear
temperature dependence seen in the ab-plane. Instead of the conductivity peak
seen in the planes, the c-axis microwave conductivity falls to low values in
the superconducting state, then rises slightly below 20K. These results show
that c-axis transport remains incoherent below Tc, even though this is one of
the least anisotropic cuprate superconductors.Comment: 4-page
A Consistent Picture of Electronic Raman Scattering and Infrared Conductivity in the Cuprates
Calculations are presented for electronic Raman scattering and infrared
conductivity in a superconductor including the effects of
elastic scattering via anisotropic impurities and inelastic spin-fluctuation
scattering. A consistent description of experiments on optimally doped Bi-2212
is made possible by considering the effects of correlations on both inelastic
and elastic scattering.Comment: 4 pages Revtex, 5 embedded eps file
Ferromagnetism in laser deposited anatase TiCoO_{2-\delta} films
Pulsed laser deposited films of Co doped anatase TiO2 are examined for Co
substitutionality, ferromagnetism, transport, magnetotransport and optical
properties. Our results show limited solubility (up to ~ 2 %) of Co in the
as-grown films and formation of Co clusters thereafter. For Ti0.93Co0.07O2-d
sample, which exhibits a Curie temperature (Tc) over 1180 K, we find the
presence of 20-50 nm Co clusters as well as a small concentration of Co
incorporated into the remaining matrix. After being subjected to the high
temperature anneal during the first magnetization measurement, the very same
sample shows a Tc ~ 650 K and almost full matrix incorporation of Co. This Tc
is close to that of as-grown Ti0.99Co0.01O2-d sample (~ 700 K). The transport,
magnetotransport and optical studies also reveal interesting effects of the
matrix incorporation of Co. These results are indicative of an intrinsic
Ti1-xCoxO2-d diluted magnetic semiconductor with Tc of about 650-700 K.Comment: 14 pages + 9 figure
Electronic structures of doped anatase : (M=Co, Mn, Fe, Ni)
We have investigated electronic structures of a room temperature diluted
magnetic semiconductor : Co-doped anatase . We have obtained the
half-metallic ground state in the local-spin-density approximation(LSDA) but
the insulating ground state in the LSDA++SO incorporating the spin-orbit
interaction. In the stoichiometric case, the low spin state of Co is realized
with the substantially large orbital moment. However, in the presence of oxygen
vacancies near Co, the spin state of Co becomes intermediate. The
ferromagnetisms in the metallic and insulating phases are accounted for by the
double-exchange-like and the superexchange mechanism, respectively. Further,
the magnetic ground states are obtained for Mn and Fe doped ,
while the paramagnetic ground state for Ni-doped .Comment: 5 pages, 4 figure
Infrared Hall effect in high Tc superconductors: Evidence for non-Fermi liquid Hall scattering
Infrared (20-120 cm-1 and 900-1100 cm-1) Faraday rotation and circular
dichroism are measured in high Tc superconductors using sensitive polarization
modulation techniques. Optimally doped YBCO thin films are studied at
temperatures down to 15 K and magnetic fields up to 8 T. At 1000 cm-1 the Hall
conductivity varies strongly with temperature in contrast to the longitudinal
conductivity which is nearly independent of temperature. The Hall scattering
rate has a T^2 temperature dependence but, unlike a Fermi liquid, depends only
weakly on frequency. The experiment puts severe constraints on theories of
transport in the normal state of high Tc superconductors.Comment: 8 pages, 3 figure
Transport Properties, Thermodynamic Properties, and Electronic Structure of SrRuO3
SrRuO is a metallic ferromagnet. Its electrical resistivity is reported
for temperatures up to 1000K; its Hall coefficient for temperatures up to 300K;
its specific heat for temperatures up to 230K. The energy bands have been
calculated by self-consistent spin-density functional theory, which finds a
ferromagnetic ordered moment of 1.45 per Ru atom. The measured
linear specific heat coefficient is 30mJ/mole, which exceeds the
theoretical value by a factor of 3.7. A transport mean free path at room
temperature of is found. The resistivity increases nearly
linearly with temperature to 1000K in spite of such a short mean free path that
resistivity saturation would be expected. The Hall coefficient is small and
positive above the Curie temperature, and exhibits both a low-field and a
high-field anomalous behavior below the Curie temperature.Comment: 6 pages (latex) and 6 figures (postscript, uuencoded.) This paper
will appear in Phys. Rev. B, Feb. 15, 199
- …
