25,666 research outputs found

    Trojans in Early Design Steps—An Emerging Threat

    Get PDF
    Hardware Trojans inserted by malicious foundries during integrated circuit manufacturing have received substantial attention in recent years. In this paper, we focus on a different type of hardware Trojan threats: attacks in the early steps of design process. We show that third-party intellectual property cores and CAD tools constitute realistic attack surfaces and that even system specification can be targeted by adversaries. We discuss the devastating damage potential of such attacks, the applicable countermeasures against them and their deficiencies

    125 GeV Higgs from a not so light Technicolor Scalar

    Full text link
    Assuming that the observed Higgs-like resonance at the Large Hadron Collider is a technicolor isosinglet scalar (the technicolor Higgs), we argue that the standard model top-induced radiative corrections reduce its dynamical mass towards the desired experimental value. We then discuss conditions for the spectrum of technicolor theories to feature a technicolor Higgs with the phenomenologically required dynamical mass. We use scaling laws coming from modifying the technicolor matter representation, number of technicolors, techniflavors as well as the number of doublets gauged under the electroweak theory. Finally we briefly summarize the potential effects of walking dynamics on the technicolor Higgs.Comment: ReVTex, 15 pages, 3 figures. Version to match the published on

    Gravitino or Axino Dark Matter with Reheat Temperature as high as 101610^{16} GeV

    Full text link
    A new scheme for lightest supersymmetric particle (LSP) dark matter is introduced and studied in theories of TeV supersymmetry with a QCD axion, aa, and a high reheat temperature after inflation, TRT_R. A large overproduction of axinos (a~\tilde{a}) and gravitinos (G~\tilde{G}) from scattering at TRT_R, and from freeze-in at the TeV scale, is diluted by the late decay of a saxion condensate that arises from inflation. The two lightest superpartners are a~\tilde{a}, with mass of order the TeV scale, and G~\tilde{G} with mass m3/2m_{3/2} anywhere between the keV and TeV scales, depending on the mediation scale of supersymmetry breaking. Dark matter contains both warm and cold components: for G~\tilde{G} LSP the warm component arises from a~G~a\tilde{a} \rightarrow \tilde{G}a, while for a~\tilde{a} LSP the warm component arises from G~a~a\tilde{G} \rightarrow \tilde{a}a. The free-streaming scale for the warm component is predicted to be of order 1 Mpc (and independent of m3/2m_{3/2} in the case of G~\tilde{G} LSP). TRT_R can be as high as 101610^{16} GeV, for any value of m3/2m_{3/2}, solving the gravitino problem. The PQ symmetry breaking scale VPQV_{PQ} depends on TRT_R and m3/2m_{3/2} and can be anywhere in the range (10101016)(10^{10} - 10^{16}) GeV. Detailed predictions are made for the lifetime of the neutralino LOSP decaying to a~+h/Z\tilde{a}+ h/Z and G~+h/Z/γ\tilde{G}+h/Z/\gamma, which is in the range of (101106)(10^{-1}-10^6)m over much of parameter space. For an axion misalignment angle of order unity, the axion contribution to dark matter is sub-dominant, except when VPQV_{PQ} approaches 101610^{16} GeV.Comment: 43 pages, 16 figure

    Diboson Signals via Fermi Scale Spin-One States

    Get PDF
    ATLAS and CMS observe deviations from the expected background in diboson invariant mass searches of new resonances around 2 TeV. We provide a general analysis of the results in terms of spin-one resonances and find that Fermi scale composite dynamics can be the culprit. The analysis and methodology can be employed for future searches at run two of the Large Hadron Collider.Comment: Version to match the published one in PRD. Note that we use an effective theory and therefore our analysis is largely model-independent and applies not only to technicolor but also to composite (goldstone) Higgs as well as to elementary extensions that appeared later in the literature. LaTeX, 2 columns, 4 pages, 5 figure

    Entanglement sharing in EϵE\otimes\epsilon Jahn-Teller model in the presence of a magnetic field

    Full text link
    We discuss the ground state entanglement of the EϵE\otimes\epsilon Jahn-Teller model in the presence of a strong transverse magnetic field as a function of the vibronic coupling strength. A complete characterization is given of the phenomenon of entanglement sharing in a system composed by a qubit coupled to two bosonic modes. Using the residual II-tangle, we find that three-partite entanglement is significantly present in the system in the parameter region near the bifurcation point of the corresponding classical model
    corecore