109 research outputs found
Role of Interchain Hopping in the Magnetic Susceptibility of Quasi-One-Dimensional Electron Systems
The role of interchain hopping in quasi-one-dimensional (Q-1D) electron
systems is investigated by extending the Kadanoff-Wilson renormalization group
of one-dimensional (1D) systems to Q-1D systems. This scheme is applied to the
extended Hubbard model to calculate the temperature () dependence of the
magnetic susceptibility, . The calculation is performed by taking
into account not only the logarithmic Cooper and Peierls channels, but also the
non-logarithmic Landau and finite momentum Cooper channels, which give relevant
contributions to the uniform response at finite temperatures. It is shown that
the interchain hopping, , reduces at low temperatures,
while it enhances at high temperatures. This notable
dependence is ascribed to the fact that enhances the
antiferromagnetic spin fluctuation at low temperatures, while it suppresses the
1D fluctuation at high temperatures. The result is at variance with the
random-phase-approximation approach, which predicts an enhancement of by over the whole temperature range. The influence of both the
long-range repulsion and the nesting deviations on is further
investigated. We discuss the present results in connection with the data of
in the (TMTTF) and (TMTSF) series of Q-1D organic
conductors, and propose a theoretical prediction for the effect of pressure on
magnetic susceptibility.Comment: 17 pages, 19figure
Pressure-induced unconventional superconductivity near a quantum critical point in CaFe2As2
75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole
resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P =
4.7 and 10.8 kbar, the temperature dependences of nuclear-spin-lattice
relaxation rate (1/T1) measured in the tetragonal phase show no coherence peak
just below Tc(P) and decrease with decreasing temperature. The
superconductivity is gapless at P = 4.7 kbar but evolves to that with multiple
gaps at P = 10.8 kbar. We find that the superconductivity appears near a
quantum critical point under pressures in the range 4.7 kbar < P < 10.8 kbar.
Both electron correlation and superconductivity disappear in the collapsed
tetragonal phase. A systematic study under pressure indicates that electron
correlations play a vital role in forming Cooper pairs in this compound.Comment: 5pages, 5figure
Quantum Monte Carlo study of the pairing symmetry competition in the Hubbard model
To shed light into the pairing mechanism of possible spin-triplet
superconductors (TMTSF)X and SrRuO, we study the competition among
various spin singlet and triplet pairing channels in the Hubbard model by
calculating the pairing interaction vertex using the ground state quantum Monte
Carlo technique. We model (TMTSF)X by a quarter-filled quasi-one
dimensional (quasi-1D) Hubbard model,and the band of SrRuO by
a two dimensional (2D) Hubbard model with a band filling of . For the
quasi-1D system, we find that triplet -wave pairing not only dominates over
triplet p-wave in agreement with the spin fluctuation theory, but also looks
unexpectedly competitive against d-wave. For the 2D system, although the
results suggest presence of attractive interaction in the triplet pairing
channels, the d-wave pairing interaction is found to be larger than those of
the triplet channels
Simple Real-Space Picture of Nodeless and Nodal s-wave Gap Functions in Iron Pnictide Superconductors
We propose a simple way to parameterize the gap function in iron pnictides.
The key idea is to use orbital representation, not band representation, and to
assume real-space short-range pairing. Our parameterization reproduces fairly
well the structure of gap function obtained in microscopic calculation. At the
same time the present parameterization is simple enough to obtain an intuitive
picture and to develop a phenomenological theory. We also discuss
simplification of the treatment of the superconducting state.Comment: 4 page
Single Impurity Problem in Iron-Pnictide Superconductors
Single impurity problem in iron-pnictide superconductors is investigated by
solving Bogoliubov-de Gennes (BdG) equation in the five-orbital model, which
enables us to distinguish s and s superconducting states. We
construct a five-orbital model suitable to BdG analysis. This model reproduces
the results of random phase approximation in the uniform case. Using this
model, we study the local density of states around a non-magnetic impurity and
discuss the bound-state peak structure, which can be used for distinguishing
s and s states. A bound state with nearly zero-energy is found
for the impurity potential eV, while the bound state peaks stick to
the gap edge in the unitary limit. Novel multiple peak structure originated
from the multi-orbital nature of the iron pnictides is also found.Comment: 5 page
Renormalization Group Technique Applied to the Pairing Interaction of the Quasi-One-Dimensional Superconductivity
A mechanism of the quasi-one-dimensional (q1d) superconductivity is
investigated by applying the renormalization group techniques to the pairing
interaction. With the obtained renormalized pairing interaction, the transition
temperature Tc and corresponding gap function are calculated by solving the
linearized gap equation. For reasonable sets of parameters, Tc of p-wave
triplet pairing is higher than that of d-wave singlet pairing due to the
one-dimensionality of interaction. These results can qualitatively explain the
superconducting properties of q1d organic conductor (TMTSF)2PF6 and the ladder
compound Sr2Ca12Cu24O41.Comment: 18 pages, 9 figures, submitted to J. Phys. Soc. Jp
d-Wave Spin Density Wave phase in the Attractive Hubbard Model with Spin Polarization
We investigate the possibility of unconventional spin density wave (SDW) in
the attractive Hubbard model with finite spin polarization. We show that
pairing and density fluctuations induce the transverse d-wave SDW near the
half-filling. This novel SDW is related to the d-wave superfluidity induced by
antiferromagnetic spin fluctuations, in the sense that they are connected with
each other through Shiba's attraction-repulsion transformation. Our results
predict the d-wave SDW in real systems, such as cold Fermi atom gases with
population imbalance and compounds involving valence skipper elements
On the Meissner Effect of the Odd-Frequency Superconductivity with Critical Spin Fluctuations: Possibility of Zero Field FFLO pairing
We investigate the influence of critical spin fluctuations on electromagnetic
responses in the odd-frequency superconductivity. It is shown that the Meissner
kernel of the odd-frequency superconductivity is strongly reduced by the
critical spin fluctuation or the massless spin wave mode in the
antiferromagnetic phase. These results imply that the superfluid density is
reduced, and the London penetration depth is lengthened for the odd-frequency
pairing. It is also shown that the zero field Flude-Ferrell-Larkin-Ovchinnikov
pairing is spontaneously realized both for even- and odd-frequency in the case
of sufficiently strong coupling with low lying spin-modes.Comment: 10 pages, 7 figure
Symmetries of Pairing Correlations in Superconductor-Ferromagnet Nanostructures
Using selection rules imposed by the Pauli principle, we classify pairing
correlations according to their symmetry properties with respect to spin,
momentum, and energy. We observe that inhomogeneity always leads to mixing of
even- and odd-energy pairing components. We investigate the superconducting
pairing correlations present near interfaces between superconductors and
ferromagnets, with focus on clean systems consisting of singlet superconductors
and either weak or half-metallic ferromagnets. Spin-active scattering in the
interface region induces all of the possible symmetry components. In
particular, the long-range equal-spin pairing correlations have odd-frequency
s-wave and even-frequency p-wave components of comparable magnitudes. We also
analyze the Josephson current through a half-metal. We find analytic
expressions and an interesting universality in the temperature dependence of
the critical current in the tunneling limit.Comment: 20 pages, 5 figures, added citations, corrected typo
Finite-Temperature Properties across the Charge Ordering Transition -- Combined Bosonization, Renormalization Group, and Numerical Methods
We theoretically describe the charge ordering (CO) metal-insulator transition
based on a quasi-one-dimensional extended Hubbard model, and investigate the
finite temperature () properties across the transition temperature, . In order to calculate dependence of physical quantities such as the
spin susceptibility and the electrical resistivity, both above and below
, a theoretical scheme is developed which combines analytical
methods with numerical calculations. We take advantage of the renormalization
group equations derived from the effective bosonized Hamiltonian, where Lanczos
exact diagonalization data are chosen as initial parameters, while the CO order
parameter at finite- is determined by quantum Monte Carlo simulations. The
results show that the spin susceptibility does not show a steep singularity at
, and it slightly increases compared to the case without CO because
of the suppression of the spin velocity. In contrast, the resistivity exhibits
a sudden increase at , below which a characteristic dependence
is observed. We also compare our results with experiments on molecular
conductors as well as transition metal oxides showing CO.Comment: 9 pages, 8 figure
- …
