2,381,977 research outputs found

    TransPlanckian Particles and the Quantization of Time

    Get PDF
    Trans-Planckian particles are elementary particles accelerated such that their energies surpass the Planck value. There are several reasons to believe that trans-Planckian particles do not represent independent degrees of freedom in Hilbert space, but they are controlled by the cis-Planckian particles. A way to learn more about the mechanisms at work here, is to study black hole horizons, starting from the scattering matrix Ansatz. By compactifying one of the three physical spacial dimensions, the scattering matrix Ansatz can be exploited more efficiently than before. The algebra of operators on a black hole horizon allows for a few distinct representations. It is found that this horizon can be seen as being built up from string bits with unit lengths, each of which being described by a representation of the SO(2,1) Lorentz group. We then demonstrate how the holographic principle works for this case, by constructing the operators corresponding to a field in space-time. The parameter t turns out to be quantized in Planckian units, divided by the period R of the compactified dimension.Comment: 12 pages plain tex, 1 figur

    The mathematical basis for deterministic quantum mechanics

    Full text link
    If there exists a classical, i.e. deterministic theory underlying quantum mechanics, an explanation must be found of the fact that the Hamiltonian, which is defined to be the operator that generates evolution in time, is bounded from below. The mechanism that can produce exactly such a constraint is identified in this paper. It is the fact that not all classical data are registered in the quantum description. Large sets of values of these data are assumed to be indistinguishable, forming equivalence classes. It is argued that this should be attributed to information loss, such as what one might suspect to happen during the formation and annihilation of virtual black holes. The nature of the equivalence classes is further elucidated, as it follows from the positivity of the Hamiltonian. Our world is assumed to consist of a very large number of subsystems that may be regarded as approximately independent, or weakly interacting with one another. As long as two (or more) sectors of our world are treated as being independent, they all must be demanded to be restricted to positive energy states only. What follows from these considerations is a unique definition of energy in the quantum system in terms of the periodicity of the limit cycles of the deterministic model.Comment: 17 pages, 3 figures. Minor corrections, comments and explanations adde

    Flag manifolds and the Landweber-Novikov algebra

    Full text link
    We investigate geometrical interpretations of various structure maps associated with the Landweber-Novikov algebra S^* and its integral dual S_*. In particular, we study the coproduct and antipode in S_*, together with the left and right actions of S^* on S_* which underly the construction of the quantum (or Drinfeld) double D(S^*). We set our realizations in the context of double complex cobordism, utilizing certain manifolds of bounded flags which generalize complex projective space and may be canonically expressed as toric varieties. We discuss their cell structure by analogy with the classical Schubert decomposition, and detail the implications for Poincare duality with respect to double cobordism theory; these lead directly to our main results for the Landweber-Novikov algebra.Comment: 23 pages. Published copy, also available at http://www.maths.warwick.ac.uk/gt/GTVol2/paper5.abs.htm

    The scattering matrix approach for the quantum black hole, an overview

    Get PDF
    If one assumes the validity of conventional quantum field theory in the vicinity of the horizon of a black hole, one does not find a quantum mechanical description of the entire black hole that even remotely resembles that of conventional forms of matter; in contrast with matter made out of ordinary particles one finds that, even if embedded in a finite volume, a black hole would be predicted to have a strictly continuous spectrum. Dissatisfied with such a result, which indeed hinges on assumptions concerning the horizon that may well be wrong, various investigators have now tried to formulate alternative approaches to the problem of ``quantizing" the black hole. We here review the approach based on the assumption of quantum mechanical purity and unitarity as a starting point, as has been advocated by the present author for some time, concentrating on the physics of the states that should live on a black hole horizon. The approach is shown to be powerful in not only producing promising models for the quantum black hole, but also new insights concerning the dynamics of physical degrees of freedom in ordinary flat space-time.Comment: Review paper, 71 pages plain TEX, 8 Figures (Postscript

    Rare b hadron decays at the LHC

    Full text link
    With the completion of Run~I of the CERN Large Hadron Collider, particle physics has entered a new era. The production of unprecedented numbers of heavy-flavoured hadrons in high energy proton-proton collisions allows detailed studies of flavour-changing processes. The increasingly precise measurements allow to probe the Standard Model with a new level of accuracy. Rare bb hadron decays provide some of the most promising approaches for such tests, since there are several observables which can be cleanly interpreted from a theoretical viewpoint. In this article, the status and prospects in this field are reviewed, with a focus on precision measurements and null tests.Comment: Invited review for Annual Reviews of Nuclear and Particle Physics. v2 as publishe

    Heat capacity of liquids: A hydrodynamic approach

    Full text link
    We study autocorrelation functions of energy, heat and entropy densities obtained by molecular dynamics simulations of supercritical Ar and compare them with the predictions of the hydrodynamic theory. It is shown that the predicted by the hydrodynamic theory single-exponential shape of the entropy density autocorrelation functions is perfectly reproduced for small wave numbers by the molecular dynamics simulations and permits the calculation of the wavenumber-dependent specific heat at constant pressure. The estimated wavenumber-dependent specific heats at constant volume and pressure, Cv(k)C_{v}(k) and Cp(k)C_{p}(k), are shown to be in the long-wavelength limit in good agreement with the macroscopic experimental values of CvC_{v} and CpC_{p} for the studied thermodynamic points of supercritical Ar.Comment: 8 pages, 5 figure
    corecore