5,061 research outputs found

    Stellar laboratories. V. The Xe VI ultraviolet spectrum and the xenon abundance in the hot DO-type white dwarf RE0503-289

    Full text link
    For the spectral analysis of spectra of hot stars with a high resolution and high signal-to-noise ratio (S/N), advanced non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that are used for their calculation. Reliable Xe VI oscillator strengths are used to identify Xe lines in the ultraviolet spectrum of the DO-type white dwarf RE0503-289 and to determine its photospheric Xe abundance. We publish newly calculated oscillator strengths that are based on a recently measured Xe VI laboratory line spectrum. These strengths were used to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models to analyze Xe VI lines exhibited in high-resolution and high S/N UV observations of RE0503-289. We identify three hitherto unknown Xe VI lines in the ultraviolet spectrum of RE0503-289 and confirm the previously measured photospheric Xe abundance of this white dwarf (log Xe = -4.2 +/- 0.6). Reliable measurements and calculations of atomic data are prerequisite for stellar-atmosphere modeling. Observed Xe VI line profiles in the ultraviolet spectrum of the white dwarf RE0503-289 were well reproduced with the newly calculated Xe VI oscillator strengths.Comment: 3 pages, 4 figure

    The mass-radius relationship from solar-type stars to terrestrial planets: a review

    Full text link
    In this review, we summarize our present knowledge of the behaviour of the mass-radius relationship from solar-type stars down to terrestrial planets, across the regime of substellar objects, brown dwarfs and giant planets. Particular attention is paid to the identification of the main physical properties or mechanisms responsible for this behaviour. Indeed, understanding the mechanical structure of an object provides valuable information about its internal structure, composition and heat content as well as its formation history. Although the general description of these properties is reasonably well mastered, disagreement between theory and observation in certain cases points to some missing physics in our present modelling of at least some of these objects. The mass-radius relationship in the overlaping domain between giant planets and low-mass brown dwarfs is shown to represent a powerful diagnostic to distinguish between these two different populations and shows once again that the present IAU distinction between these two populations at a given mass has no valid foundation.Comment: Cool Stars, Stellar Systems and the Sun 15, invited revie

    Time boundary terms and Dirac constraints

    Full text link
    Time boundary terms usually added to action principles are systematically handled in the framework of Dirac's canonical analysis. The procedure begins with the introduction of the boundary term into the integral Hamiltonian action and then the resulting action is interpreted as a Lagrangian one to which Dirac's method is applied. Once the general theory is developed, the current procedure is implemented and illustrated in various examples which are originally endowed with different types of constraints.Comment: 12 page

    Magnetization in AIIIBV semiconductor heterostructures with the depletion layer of manganese

    Get PDF
    The magnetic moment and magnetization in GaAs/Ga0.84_{0.84}In0.16_{0.16}As/GaAs heterostructures with Mn deluted in GaAs cover layers and with atomically controlled Mn δ\delta-layer thicknesses near GaInAs-quantum well (\sim3 nm) in temperature range T=(1.8-300)K in magnetic field up to 50 kOe have been investigated. The mass magnetization all of the samples of GaAs/Ga0.84_{0.84}In0.16_{0.16}As/GaAs with Mn increases with the increasing of the magnetic field that pointed out on the presence of low-dimensional ferromagnetism in the manganese depletion layer of GaAs based structures. It has been estimated the manganese content threshold at which the ferromagnetic ordering was found.Comment: 8 pages, 3 figure

    Serum proteomics of active tuberculosis patients and contacts reveals unique processes activated during Mycobacterium tuberculosis infection.

    Get PDF
    Tuberculosis (TB) is the most lethal infection among infectious diseases. The specific aim of this study was to establish panels of serum protein biomarkers representative of active TB patients and their household contacts who were either infected (LTBI) or uninfected (EMI-TB Discovery Cohort, Pontevedra Region, Spain). A TMT (Tamdem mass tags) 10plex-based quantitative proteomics study was performed in quintuplicate containing a total of 15 individual serum samples per group. Peptides were analyzed in an LC-Orbitrap Elite platform, and raw data were processed using Proteome Discoverer 2.1. A total of 418 proteins were quantified. The specific protein signature of active TB patients was characterized by an accumulation of proteins related to complement activation, inflammation and modulation of immune response and also by a decrease of a small subset of proteins, including apolipoprotein A and serotransferrin, indicating the importance of lipid transport and iron assimilation in the progression of the disease. This signature was verified by the targeted measurement of selected candidates in a second cohort (EMI-TB Verification Cohort, Maputo Region, Mozambique) by ELISA and nephelometry techniques. These findings will aid our understanding of the complex metabolic processes associated with TB progression from LTBI to active disease

    Modulation of CMB polarization with a warm rapidly-rotating half-wave plate on the Atacama B-Mode Search (ABS) instrument

    Full text link
    We evaluate the modulation of Cosmic Microwave Background (CMB) polarization using a rapidly-rotating, half-wave plate (HWP) on the Atacama B-Mode Search (ABS). After demodulating the time-ordered-data (TOD), we find a significant reduction of atmospheric fluctuations. The demodulated TOD is stable on time scales of 500-1000 seconds, corresponding to frequencies of 1-2 mHz. This facilitates recovery of cosmological information at large angular scales, which are typically available only from balloon-borne or satellite experiments. This technique also achieves a sensitive measurement of celestial polarization without differencing the TOD of paired detectors sensitive to two orthogonal linear polarizations. This is the first demonstration of the ability to remove atmospheric contamination at these levels from a ground-based platform using a rapidly-rotating HWP.Comment: 8 pages, 8 figures, Published in RSI under the title "Modulation of cosmic microwave background polarization with a warm rapidly rotating half-wave plate on the Atacama B-Mode Search instrument.

    Transverse electrokinetic and microfluidic effects in micro-patterned channels: lubrication analysis for slab geometries

    Full text link
    Off-diagonal (transverse) effects in micro-patterned geometries are predicted and analyzed within the general frame of linear response theory, relating applied presure gradient and electric field to flow and electric current. These effects could contribute to the design of pumps, mixers or flow detectors. Shape and charge density modulations are proposed as a means to obtain sizeable transverse effects, as demonstrated by focusing on simple geometries and using the lubrication approximation.Comment: 9 pages, 7 figure

    Some applications of quasi-velocities in optimal control

    Get PDF
    In this paper we study optimal control problems for nonholonomic systems defined on Lie algebroids by using quasi-velocities. We consider both kinematic, i.e. systems whose cost functional depends only on position and velocities, and dynamic optimal control problems, i.e. systems whose cost functional depends also on accelerations. The formulation of the problem directly at the level of Lie algebroids turns out to be the correct framework to explain in detail similar results appeared recently (Maruskin and Bloch, 2007). We also provide several examples to illustrate our construction.Comment: Revtex 4.1, 20 pages. To appear in Int. J. Geom. Meth. Modern Physic

    Performance of upstream interaction region detectors for the FIRST experiment at GSI

    Get PDF
    The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at GSI has been designed to study carbon fragmentation, measuring 12C double differential cross sections (∂2σ/ ∂θ∂E) for different beam energies between 100 and 1000 MeV/u. The experimental setup integrates newly designed detectors in the, so called, Interaction Region around the graphite target. The Interaction Region upstream detectors are a 250 μm thick scintillator and a drift chamber optimized for a precise measurement of the ions interaction time and position on the target. In this article we review the design of the upstream detectors along with the preliminary results of the data taking performed on August 2011 with 400 MeV/u fully stripped carbon ion beam at GSI. Detectors performances will be reviewed and compared to those obtained during preliminary tests, performed with 500 MeV electrons (at the BTF facility in the INFN Frascati Laboratories) and 80 MeV/u protons and carbon ions (at the INFN LNS Laboratories in Catania)
    corecore