94 research outputs found
Extended envelopes around Galactic Cepheids IV. T Monocerotis and X Sagittarii from mid-infrared interferometry with VLTI/MIDI
Aims. We study the close environment of nearby Cepheids using high spatial
resolution observations in the mid-infrared with the VLTI/MIDI instrument, a
two-beam interferometric recombiner. Methods. We obtained spectra and
visibilities for the classical Cepheids X Sgr and T Mon. We fitted the MIDI
measurements, supplemented by B, V, J, H, K literature photometry, with the
numerical transfer code DUSTY to determine the dust shell parameters. We used a
typical dust composition for circumstellar environments. Results. We detect an
extended dusty environment in the spectra and visibilities for both stars,
although T Mon might suffer from thermal background contamination. We attribute
this to the presence of a circumstellar envelope (CSE) surrounding the
Cepheids. This is optically thin for X Sgr (tau(0.55microns) = 0.008), while it
appears to be thicker for T Mon (tau(0.55micron) = 0.15). They are located at
about 15-20 stellar radii. Following our previous work, we derived a likely
period-excess relation in the VISIR PAH1 filter, f(8.6micron)[%]=
0.81(+/-0.04)P[day]. We argue that the impact of CSEs on the mid-IR
period-luminosity (P-L) relation cannot be negligible because they can bias the
Cepheid brightness by up to about 30 %. For the K-band P-L relation, the CSE
contribution seems to be lower (< 5 %), but the sample needs to be enlarged to
firmly conclude that the impact of the CSEs is negligible in this band.Comment: Accepted for publication in Astronomy and Astrophysic
An edge-on translucent dust disk around the nearest AGB star L2 Puppis - VLT/NACO spectro-imaging from 1.04 to 4.05 microns and VLTI interferometry
As the nearest known AGB star (d=64pc) and one of the brightest (mK-2), L2
Pup is a particularly interesting benchmark object to monitor the final stages
of stellar evolution. We report new lucky imaging observations of this star
with the VLT/NACO adaptive optics system in twelve narrow band filters covering
the 1.0-4.0 microns wavelength range. These diffraction limited images reveal
an extended circumstellar dust lane in front of the star, that exhibits a high
opacity in the J band and becomes translucent in the H and K bands. In the L
band, extended thermal emission from the dust is detected. We reproduce these
observations using Monte-Carlo radiative transfer modeling of a dust disk with
the RADMC-3D code. We also present new interferometric observations with the
VLTI/VINCI and MIDI instruments. We measure in the K band an upper limit to the
limb-darkened angular diameter of theta_LD = 17.9 +/- 1.6 mas, converting to a
maximum linear radius of R = 123 +/- 14 Rsun. Considering the geometry of the
extended K band emission in the NACO images, this upper limit is probably close
to the actual angular diameter of the star. The position of L2 Pup in the
Herzsprung-Russell diagram indicates that this star has a mass around 2 Msun
and is probably experiencing an early stage of the asymptotic giant branch. We
do not detect any stellar companion of L2 Pup in our adaptive optics and
interferometric observations, and we attribute its apparent astrometric wobble
in the Hipparcos data to variable lighting effects on its circumstellar
material. We however do not exclude the presence of a binary companion, as the
large loop structure extending to more than 10 AU to the North-East of the disk
in our L band images may be the result of interaction between the stellar wind
of L2 Pup and a hidden secondary object. The geometric configuration that we
propose, with a large dust disk seen almost edge-on, appears particularly
favorable to test and develop our understanding of the formation of bipolar
nebulae.Comment: 16 pages, 15 figure
Investigating Cepheid Carinae's Cycle-to-cycle Variations via Contemporaneous Velocimetry and Interferometry
Baade-Wesselink-type (BW) techniques enable geometric distance measurements
of Cepheid variable stars in the Galaxy and the Magellanic clouds. The leading
uncertainties involved concern projection factors required to translate
observed radial velocities (RVs) to pulsational velocities and recently
discovered modulated variability. We carried out an unprecedented observational
campaign involving long-baseline interferometry (VLTI/PIONIER) and spectroscopy
(Euler/Coralie) to search for modulated variability in the long-period (P
35.5 d) Cepheid Carinae. We determine highly precise angular diameters
from squared visibilities and investigate possible differences between two
consecutive maximal diameters, . We characterize the
modulated variability along the line-of-sight using 360 high-precision RVs.
Here we report tentative evidence for modulated angular variability and confirm
cycle-to-cycle differences of Carinae's RV variability. Two successive
maxima yield = 13.1 0.7 (stat.) {\mu}as for
uniform disk models and 22.5 1.4 (stat.) {\mu}as (4% of the total angular
variation) for limb-darkened models. By comparing new RVs with 2014 RVs we show
modulation to vary in strength. Barring confirmation, our results suggest the
optical continuum (traced by interferometry) to be differently affected by
modulation than gas motions (traced by spectroscopy). This implies a previously
unknown time-dependence of projection factors, which can vary by 5% between
consecutive cycles of expansion and contraction. Additional interferometric
data are required to confirm modulated angular diameter variations. By
understanding the origin of modulated variability and monitoring its long-term
behavior, we aim to improve the accuracy of BW distances and further the
understanding of stellar pulsations.Comment: Accepted for publication in MNRAS. 19 pages, 13 figures, 10 table
Mean angular diameters, distances and pulsation modes of the classical Cepheids FF Aql and T Vul - CHARA/FLUOR near-infrared interferometric observations
We report the first angular diameter measurements of two classical Cepheids,
FF Aql and T Vul, that we have obtained with the FLUOR instrument installed at
the CHARA interferometric array. We obtain average limb-darkened angular
diameters of \theta_LD = 0.878 +/- 0.013 mas and \theta_LD = 0.629 +/- 0.013
mas, respectively for FF Aql and T Vul. Combining these angular diameters with
the HST-FGS trigonometric parallaxes leads to linear radii R = 33.6 +/- 2.2
Rsol and R = 35.6 +/- 4.4 Rsol, respectively. The comparison with empirical and
theoretical Period-Radius relations leads to the conclusion that these Cepheids
are pulsating in their fundamental mode. The knowledge of the pulsation mode is
of prime importance to calibrate the Period-Luminosity relation with a uniform
sample of fundamental mode Cepheids
Multiplicity of Galactic Cepheids from long-baseline interferometry~III. Sub-percent limits on the relative brightness of a close companion of ~Cephei
We report new CHARA/MIRC interferometric observations of the Cepheid
archetype Cep, which aimed at detecting the newly discovered
spectroscopic companion. We reached a maximum dynamic range = 6.4,
5.8, and 5.2 mag, respectively within the relative distance to the Cepheid mas, mas and mas. Our observations did not
show strong evidence of a companion. We have a marginal detection at
with a flux ratio of 0.21\%, but nothing convincing as we found other possible
probable locations. We ruled out the presence of companion with a spectral type
earlier than F0V, A1V and B9V, respectively for the previously cited ranges
. From our estimated sensitivity limits and the Cepheid light curve, we
derived lower-limit magnitudes in the band for this possible companion to
be and 7.77 mag, respectively for mas,
mas and mas. We also found that to be consistent
with the predicted orbital period, the companion has to be located at a
projected separation mas with a spectral type later than a F0V star.Comment: Accepted for publication in MNRA
Multiplicity of Galactic Cepheids from long-baseline interferometry I. CHARA/MIRC detection of the companion of V1334 Cygni
We aim at determining the masses of Cepheids in binary systems, as well as
their geometric distances and the flux contribution of the companions. The
combination of interferometry with spectroscopy will offer a unique and
independent estimate of the Cepheid masses. Using long-baseline interferometry
at visible and infrared wavelengths, it is possible to spatially resolve binary
systems containing a Cepheid down to milliarcsecond separations. Based on the
resulting visual orbit and radial velocities, we can then derive the
fundamental parameters of these systems, particularly the masses of the
components and the geometric distance. We therefore performed interferometric
observations of the first-overtone mode Cepheid V1334 Cyg with the CHARA/MIRC
combiner. We report the first detection of a Cepheid companion using
long-baseline interferometry. We detect the signature of a companion orbiting
V1334 Cyg at two epochs. We measure a flux ratio between the companion and the
Cepheid f = 3.10+/-0.08%, giving an apparent magnitude mH = 8.47+/-0.15mag. The
combination of interferometric and spectroscopic data have enabled the unique
determination of the orbital elements: P = 1938.6+/-1.2 days, Tp = 2 443
616.1+/-7.3, a = 8.54+/-0.51mas, i = 124.7+/-1.8{\deg}, e = 0.190+/-0.013,
{\omega} = 228.7+/-1.6{\deg}, and {\Omega} = 206.3+/-9.4{\deg}. We derive a
minimal distance d ~ 691 pc, a minimum mass for both stars of 3.6 Msol, with a
spectral type earlier than B5.5V for the companion star. Our measured flux
ratio suggests that radial velocity detection of the companion using
spectroscopy is within reach, and would provide an orbital parallax and
model-free masses.Comment: Published in A&
Multiplicity of Galactic Cepheids from long-baseline interferometry. I. CHARA/MIRC detection of the companion of V1334 Cygni
This is the final version of the article. Available from the publisher via the DOI in this record.Context. More than 60% of Cepheids are in binary or multiple systems. Studying such systems could lead to a better understanding
of the age and evolution of Cepheids. These are also useful tools to estimate the mass of Cepheids, and constrain theoretical models
of their pulsation and evolution.
Aims. We aim at determining the masses of Cepheids in binary systems, as well as their geometric distances and the flux contribution
of the companions. The combination of interferometry with spectroscopy will offer a unique and independent estimate of the Cepheid
masses.
Methods. Using long-baseline interferometry at visible and infrared wavelengths, it is possible to spatially resolve binary systems
containing a Cepheid down to milliarcsecond separations. Based on the resulting visual orbit and radial velocities, we can then derive
the fundamental parameters of these systems, particularly the masses of the components and the geometric distance. We therefore
performed interferometric observations of the first-overtone mode Cepheid V1334 Cyg with the CHARA/MIRC combiner.
Results. We report the first detection of a Cepheid companion using long-baseline interferometry. We detect the signature of a
companion orbiting V1334 Cyg at two epochs. We measure a flux ratio between the companion and the Cepheid f = 3.10 ± 0.08%,
giving an apparent magnitude mH = 8.47 ± 0.15 mag. The combination of interferometric and spectroscopic data have enabled
the unique determination of the orbital elements. P = 1938.6 ± 1.2 days, Tp = 2 443 616.1 ± 7.3, a = 8.54 ± 0.51 mas, i =
124.7 ± 1.8
◦
, e = 0.190 ± 0.013, ω = 228.7 ± 1.6
◦
, and Ω = 206.3 ± 9.4
◦
. We derive a minimal distance d ∼ 691 pc, a minimum
mass for both stars of 3.6 M , with a spectral type earlier than B5.5V for the companion star. Our measured flux ratio suggests that
radial velocity detection of the companion using spectroscopy is within reach, and would provide an orbital parallax and model-free
massesThe authors would like to thank the CHARA Array and
Mount Wilson Observatory staff for their support. Research conducted at the
CHARA Array is funded by the National Science Foundation through NSF
grant AST-0908253, by Georgia State University, the W. M. Keck Foundation,
the Packard Foundation, and the NASA Exoplanet Science Institute. J.D.M.
acknowledges funding from the NSF grants AST-0707927 and AST-0807577.
W.G. and G.P. gratefully acknowledge financial support for this work from
the BASAL Centro de Astrofísica y Tecnologías Afines (CATA) PFB-06/2007.
Support from the Polish National Science Centre grant MAESTRO and the
Polish Ministry of Science grant Ideas Plus (awarded to G. P.) is also acknowledge.
This research received the support of PHASE, the high angular
resolution partnership between ONERA, Observatoire de Paris, CNRS,
and University Denis Diderot Paris 7. A.G. acknowledges support from
FONDECYT grant 3130361. LSz has been supported by the ESTEC Contract
No.4000106398/12/NL/KML. This work made use of the SIMBAD and VIZIER
astrophysical database from CDS, Strasbourg, France and the bibliographic informations
from the NASA Astrophysics Data System. This research has made
use of the Jean-Marie Mariotti Center LITpro service, co-developed by CRAL,
LAOG and FIZEAU, and SearchCal service, co-developed by FIZEAU and
LAOG/IPAG, and of CDS Astronomical Databases SIMBAD and VIZIER
Refined parameters and spectroscopic transit of the super-massive planet HD147506b
In this paper, we report a refined determination of the orbital parameters
and the detection of the Rossiter-McLaughlin effect of the recently discovered
transiting exoplanet HD147506b (HAT-P-2b). The large orbital eccentricity at
the short orbital period of this exoplanet is unexpected and is distinguishing
from other known transiting exoplanets. We performed high-precision radial
velocity spectroscopic observations of HD147506 (HAT-P-2) with the new
spectrograph SOPHIE, mounted on the 1.93 m telescope at the Haute-Provence
observatory (OHP). We obtained 63 new measurements, including 35 on May 14 and
20 on June 11, when the planet was transiting its parent star. The radial
velocity (RV) anomaly observed illustrates that HAT-P-2b orbital motion is set
in the same direction as its parent star spin. The sky-projected angle between
the normal of the orbital plane and the stellar spin axis, \lambda = 0.2 +12.2
-12.5 deg, is consistent with zero. The planetary and stellar radii were
re-determined, yielding R_p = 0.951 +0.039 -0.053 R_Jup, R_s = 1.416 +0.040
-0.062 R_Sun. The mass M_p = 8.62 +0.39 -0.55 M_Jup and radius of HAT-P-2b
indicate a density of 12.5 +2.6 -3.6 g cm^{-3}, suggesting an object in between
the known close-in planets with typical density of the order of 1 g cm^{-3},
and the very low-mass stars, with density greater than 50 g cm^{-3}.Comment: Submitted to A&A; V2: Replaced by accepted versio
Science cases for a visible interferometer
High spatial resolution is the key for the understanding various astrophysical phenomena. But even with the future E-ELT, single dish instruments are limited to a spatial resolution of about 4 mas in the visible. For the closest objects within our Galaxy most of the stellar photosphere remains smaller than 1 mas. With the success of long baseline interferometry these limitations were soom overcome. Today low and high resolution interferometric instruments on the VLTI and CHARA offer an immense range of astrophysical studies. Combining more telescopes and moving to visible wavelengths broadens the science cases even more. With the idea of developing strong science cases for a future visible interferometer, we organized a science group around the following topics: pre-main sequence and main sequence stars, fundamental parameters, asteroseismology and classical pulsating stars, evolved stars, massive stars, active galactic nuclei (AGNs) and imaging techniques. A meeting was organized on the 15th and 16th of January, 2015 in Nice with the support of the Action Specific in Haute Resolution Angulaire (ASHRA), the Programme National en Physique Stellaire (PNPS), the Lagrange Laboratory and the Observatoire de la Cote d'Azur, in order to present these cases and to discuss them further for future visible interferometers. This White Paper presents the outcome of the exchanges. This book is dedicated to the memory of our colleague Olivier Chesneau who passed away at the age of 41
Young and Intermediate-age Distance Indicators
Distance measurements beyond geometrical and semi-geometrical methods, rely
mainly on standard candles. As the name suggests, these objects have known
luminosities by virtue of their intrinsic proprieties and play a major role in
our understanding of modern cosmology. The main caveats associated with
standard candles are their absolute calibration, contamination of the sample
from other sources and systematic uncertainties. The absolute calibration
mainly depends on their chemical composition and age. To understand the impact
of these effects on the distance scale, it is essential to develop methods
based on different sample of standard candles. Here we review the fundamental
properties of young and intermediate-age distance indicators such as Cepheids,
Mira variables and Red Clump stars and the recent developments in their
application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in
Space Science Reviews (Chapter 3 of a special collection resulting from the
May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space
Age
- …
