94 research outputs found

    Extended envelopes around Galactic Cepheids IV. T Monocerotis and X Sagittarii from mid-infrared interferometry with VLTI/MIDI

    Full text link
    Aims. We study the close environment of nearby Cepheids using high spatial resolution observations in the mid-infrared with the VLTI/MIDI instrument, a two-beam interferometric recombiner. Methods. We obtained spectra and visibilities for the classical Cepheids X Sgr and T Mon. We fitted the MIDI measurements, supplemented by B, V, J, H, K literature photometry, with the numerical transfer code DUSTY to determine the dust shell parameters. We used a typical dust composition for circumstellar environments. Results. We detect an extended dusty environment in the spectra and visibilities for both stars, although T Mon might suffer from thermal background contamination. We attribute this to the presence of a circumstellar envelope (CSE) surrounding the Cepheids. This is optically thin for X Sgr (tau(0.55microns) = 0.008), while it appears to be thicker for T Mon (tau(0.55micron) = 0.15). They are located at about 15-20 stellar radii. Following our previous work, we derived a likely period-excess relation in the VISIR PAH1 filter, f(8.6micron)[%]= 0.81(+/-0.04)P[day]. We argue that the impact of CSEs on the mid-IR period-luminosity (P-L) relation cannot be negligible because they can bias the Cepheid brightness by up to about 30 %. For the K-band P-L relation, the CSE contribution seems to be lower (< 5 %), but the sample needs to be enlarged to firmly conclude that the impact of the CSEs is negligible in this band.Comment: Accepted for publication in Astronomy and Astrophysic

    An edge-on translucent dust disk around the nearest AGB star L2 Puppis - VLT/NACO spectro-imaging from 1.04 to 4.05 microns and VLTI interferometry

    Get PDF
    As the nearest known AGB star (d=64pc) and one of the brightest (mK-2), L2 Pup is a particularly interesting benchmark object to monitor the final stages of stellar evolution. We report new lucky imaging observations of this star with the VLT/NACO adaptive optics system in twelve narrow band filters covering the 1.0-4.0 microns wavelength range. These diffraction limited images reveal an extended circumstellar dust lane in front of the star, that exhibits a high opacity in the J band and becomes translucent in the H and K bands. In the L band, extended thermal emission from the dust is detected. We reproduce these observations using Monte-Carlo radiative transfer modeling of a dust disk with the RADMC-3D code. We also present new interferometric observations with the VLTI/VINCI and MIDI instruments. We measure in the K band an upper limit to the limb-darkened angular diameter of theta_LD = 17.9 +/- 1.6 mas, converting to a maximum linear radius of R = 123 +/- 14 Rsun. Considering the geometry of the extended K band emission in the NACO images, this upper limit is probably close to the actual angular diameter of the star. The position of L2 Pup in the Herzsprung-Russell diagram indicates that this star has a mass around 2 Msun and is probably experiencing an early stage of the asymptotic giant branch. We do not detect any stellar companion of L2 Pup in our adaptive optics and interferometric observations, and we attribute its apparent astrometric wobble in the Hipparcos data to variable lighting effects on its circumstellar material. We however do not exclude the presence of a binary companion, as the large loop structure extending to more than 10 AU to the North-East of the disk in our L band images may be the result of interaction between the stellar wind of L2 Pup and a hidden secondary object. The geometric configuration that we propose, with a large dust disk seen almost edge-on, appears particularly favorable to test and develop our understanding of the formation of bipolar nebulae.Comment: 16 pages, 15 figure

    Investigating Cepheid \ell Carinae's Cycle-to-cycle Variations via Contemporaneous Velocimetry and Interferometry

    Full text link
    Baade-Wesselink-type (BW) techniques enable geometric distance measurements of Cepheid variable stars in the Galaxy and the Magellanic clouds. The leading uncertainties involved concern projection factors required to translate observed radial velocities (RVs) to pulsational velocities and recently discovered modulated variability. We carried out an unprecedented observational campaign involving long-baseline interferometry (VLTI/PIONIER) and spectroscopy (Euler/Coralie) to search for modulated variability in the long-period (P \sim 35.5 d) Cepheid Carinae. We determine highly precise angular diameters from squared visibilities and investigate possible differences between two consecutive maximal diameters, ΔmaxΘ\Delta_{\rm{max}} \Theta. We characterize the modulated variability along the line-of-sight using 360 high-precision RVs. Here we report tentative evidence for modulated angular variability and confirm cycle-to-cycle differences of \ell Carinae's RV variability. Two successive maxima yield ΔmaxΘ\Delta_{\rm{max}} \Theta = 13.1 ±\pm 0.7 (stat.) {\mu}as for uniform disk models and 22.5 ±\pm 1.4 (stat.) {\mu}as (4% of the total angular variation) for limb-darkened models. By comparing new RVs with 2014 RVs we show modulation to vary in strength. Barring confirmation, our results suggest the optical continuum (traced by interferometry) to be differently affected by modulation than gas motions (traced by spectroscopy). This implies a previously unknown time-dependence of projection factors, which can vary by 5% between consecutive cycles of expansion and contraction. Additional interferometric data are required to confirm modulated angular diameter variations. By understanding the origin of modulated variability and monitoring its long-term behavior, we aim to improve the accuracy of BW distances and further the understanding of stellar pulsations.Comment: Accepted for publication in MNRAS. 19 pages, 13 figures, 10 table

    Mean angular diameters, distances and pulsation modes of the classical Cepheids FF Aql and T Vul - CHARA/FLUOR near-infrared interferometric observations

    Full text link
    We report the first angular diameter measurements of two classical Cepheids, FF Aql and T Vul, that we have obtained with the FLUOR instrument installed at the CHARA interferometric array. We obtain average limb-darkened angular diameters of \theta_LD = 0.878 +/- 0.013 mas and \theta_LD = 0.629 +/- 0.013 mas, respectively for FF Aql and T Vul. Combining these angular diameters with the HST-FGS trigonometric parallaxes leads to linear radii R = 33.6 +/- 2.2 Rsol and R = 35.6 +/- 4.4 Rsol, respectively. The comparison with empirical and theoretical Period-Radius relations leads to the conclusion that these Cepheids are pulsating in their fundamental mode. The knowledge of the pulsation mode is of prime importance to calibrate the Period-Luminosity relation with a uniform sample of fundamental mode Cepheids

    Multiplicity of Galactic Cepheids from long-baseline interferometry~III. Sub-percent limits on the relative brightness of a close companion of δ\delta~Cephei

    Full text link
    We report new CHARA/MIRC interferometric observations of the Cepheid archetype δ\delta Cep, which aimed at detecting the newly discovered spectroscopic companion. We reached a maximum dynamic range ΔH\Delta H = 6.4, 5.8, and 5.2 mag, respectively within the relative distance to the Cepheid r<25r < 25 mas, 25<r<5025 < r < 50 mas and 50<r<10050 < r < 100 mas. Our observations did not show strong evidence of a companion. We have a marginal detection at 3σ3\sigma with a flux ratio of 0.21\%, but nothing convincing as we found other possible probable locations. We ruled out the presence of companion with a spectral type earlier than F0V, A1V and B9V, respectively for the previously cited ranges rr. From our estimated sensitivity limits and the Cepheid light curve, we derived lower-limit magnitudes in the HH band for this possible companion to be Hcomp>9.15,8.31H_\mathrm{comp} > 9.15, 8.31 and 7.77 mag, respectively for r<25r < 25 mas, 25<r<5025 < r < 50 mas and 50<r<10050 < r < 100 mas. We also found that to be consistent with the predicted orbital period, the companion has to be located at a projected separation <24< 24 mas with a spectral type later than a F0V star.Comment: Accepted for publication in MNRA

    Multiplicity of Galactic Cepheids from long-baseline interferometry I. CHARA/MIRC detection of the companion of V1334 Cygni

    Get PDF
    We aim at determining the masses of Cepheids in binary systems, as well as their geometric distances and the flux contribution of the companions. The combination of interferometry with spectroscopy will offer a unique and independent estimate of the Cepheid masses. Using long-baseline interferometry at visible and infrared wavelengths, it is possible to spatially resolve binary systems containing a Cepheid down to milliarcsecond separations. Based on the resulting visual orbit and radial velocities, we can then derive the fundamental parameters of these systems, particularly the masses of the components and the geometric distance. We therefore performed interferometric observations of the first-overtone mode Cepheid V1334 Cyg with the CHARA/MIRC combiner. We report the first detection of a Cepheid companion using long-baseline interferometry. We detect the signature of a companion orbiting V1334 Cyg at two epochs. We measure a flux ratio between the companion and the Cepheid f = 3.10+/-0.08%, giving an apparent magnitude mH = 8.47+/-0.15mag. The combination of interferometric and spectroscopic data have enabled the unique determination of the orbital elements: P = 1938.6+/-1.2 days, Tp = 2 443 616.1+/-7.3, a = 8.54+/-0.51mas, i = 124.7+/-1.8{\deg}, e = 0.190+/-0.013, {\omega} = 228.7+/-1.6{\deg}, and {\Omega} = 206.3+/-9.4{\deg}. We derive a minimal distance d ~ 691 pc, a minimum mass for both stars of 3.6 Msol, with a spectral type earlier than B5.5V for the companion star. Our measured flux ratio suggests that radial velocity detection of the companion using spectroscopy is within reach, and would provide an orbital parallax and model-free masses.Comment: Published in A&

    Multiplicity of Galactic Cepheids from long-baseline interferometry. I. CHARA/MIRC detection of the companion of V1334 Cygni

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Context. More than 60% of Cepheids are in binary or multiple systems. Studying such systems could lead to a better understanding of the age and evolution of Cepheids. These are also useful tools to estimate the mass of Cepheids, and constrain theoretical models of their pulsation and evolution. Aims. We aim at determining the masses of Cepheids in binary systems, as well as their geometric distances and the flux contribution of the companions. The combination of interferometry with spectroscopy will offer a unique and independent estimate of the Cepheid masses. Methods. Using long-baseline interferometry at visible and infrared wavelengths, it is possible to spatially resolve binary systems containing a Cepheid down to milliarcsecond separations. Based on the resulting visual orbit and radial velocities, we can then derive the fundamental parameters of these systems, particularly the masses of the components and the geometric distance. We therefore performed interferometric observations of the first-overtone mode Cepheid V1334 Cyg with the CHARA/MIRC combiner. Results. We report the first detection of a Cepheid companion using long-baseline interferometry. We detect the signature of a companion orbiting V1334 Cyg at two epochs. We measure a flux ratio between the companion and the Cepheid f = 3.10 ± 0.08%, giving an apparent magnitude mH = 8.47 ± 0.15 mag. The combination of interferometric and spectroscopic data have enabled the unique determination of the orbital elements. P = 1938.6 ± 1.2 days, Tp = 2 443 616.1 ± 7.3, a = 8.54 ± 0.51 mas, i = 124.7 ± 1.8 ◦ , e = 0.190 ± 0.013, ω = 228.7 ± 1.6 ◦ , and Ω = 206.3 ± 9.4 ◦ . We derive a minimal distance d ∼ 691 pc, a minimum mass for both stars of 3.6 M , with a spectral type earlier than B5.5V for the companion star. Our measured flux ratio suggests that radial velocity detection of the companion using spectroscopy is within reach, and would provide an orbital parallax and model-free massesThe authors would like to thank the CHARA Array and Mount Wilson Observatory staff for their support. Research conducted at the CHARA Array is funded by the National Science Foundation through NSF grant AST-0908253, by Georgia State University, the W. M. Keck Foundation, the Packard Foundation, and the NASA Exoplanet Science Institute. J.D.M. acknowledges funding from the NSF grants AST-0707927 and AST-0807577. W.G. and G.P. gratefully acknowledge financial support for this work from the BASAL Centro de Astrofísica y Tecnologías Afines (CATA) PFB-06/2007. Support from the Polish National Science Centre grant MAESTRO and the Polish Ministry of Science grant Ideas Plus (awarded to G. P.) is also acknowledge. This research received the support of PHASE, the high angular resolution partnership between ONERA, Observatoire de Paris, CNRS, and University Denis Diderot Paris 7. A.G. acknowledges support from FONDECYT grant 3130361. LSz has been supported by the ESTEC Contract No.4000106398/12/NL/KML. This work made use of the SIMBAD and VIZIER astrophysical database from CDS, Strasbourg, France and the bibliographic informations from the NASA Astrophysics Data System. This research has made use of the Jean-Marie Mariotti Center LITpro service, co-developed by CRAL, LAOG and FIZEAU, and SearchCal service, co-developed by FIZEAU and LAOG/IPAG, and of CDS Astronomical Databases SIMBAD and VIZIER

    Refined parameters and spectroscopic transit of the super-massive planet HD147506b

    Full text link
    In this paper, we report a refined determination of the orbital parameters and the detection of the Rossiter-McLaughlin effect of the recently discovered transiting exoplanet HD147506b (HAT-P-2b). The large orbital eccentricity at the short orbital period of this exoplanet is unexpected and is distinguishing from other known transiting exoplanets. We performed high-precision radial velocity spectroscopic observations of HD147506 (HAT-P-2) with the new spectrograph SOPHIE, mounted on the 1.93 m telescope at the Haute-Provence observatory (OHP). We obtained 63 new measurements, including 35 on May 14 and 20 on June 11, when the planet was transiting its parent star. The radial velocity (RV) anomaly observed illustrates that HAT-P-2b orbital motion is set in the same direction as its parent star spin. The sky-projected angle between the normal of the orbital plane and the stellar spin axis, \lambda = 0.2 +12.2 -12.5 deg, is consistent with zero. The planetary and stellar radii were re-determined, yielding R_p = 0.951 +0.039 -0.053 R_Jup, R_s = 1.416 +0.040 -0.062 R_Sun. The mass M_p = 8.62 +0.39 -0.55 M_Jup and radius of HAT-P-2b indicate a density of 12.5 +2.6 -3.6 g cm^{-3}, suggesting an object in between the known close-in planets with typical density of the order of 1 g cm^{-3}, and the very low-mass stars, with density greater than 50 g cm^{-3}.Comment: Submitted to A&A; V2: Replaced by accepted versio

    Science cases for a visible interferometer

    Get PDF
    High spatial resolution is the key for the understanding various astrophysical phenomena. But even with the future E-ELT, single dish instruments are limited to a spatial resolution of about 4 mas in the visible. For the closest objects within our Galaxy most of the stellar photosphere remains smaller than 1 mas. With the success of long baseline interferometry these limitations were soom overcome. Today low and high resolution interferometric instruments on the VLTI and CHARA offer an immense range of astrophysical studies. Combining more telescopes and moving to visible wavelengths broadens the science cases even more. With the idea of developing strong science cases for a future visible interferometer, we organized a science group around the following topics: pre-main sequence and main sequence stars, fundamental parameters, asteroseismology and classical pulsating stars, evolved stars, massive stars, active galactic nuclei (AGNs) and imaging techniques. A meeting was organized on the 15th and 16th of January, 2015 in Nice with the support of the Action Specific in Haute Resolution Angulaire (ASHRA), the Programme National en Physique Stellaire (PNPS), the Lagrange Laboratory and the Observatoire de la Cote d'Azur, in order to present these cases and to discuss them further for future visible interferometers. This White Paper presents the outcome of the exchanges. This book is dedicated to the memory of our colleague Olivier Chesneau who passed away at the age of 41

    Young and Intermediate-age Distance Indicators

    Full text link
    Distance measurements beyond geometrical and semi-geometrical methods, rely mainly on standard candles. As the name suggests, these objects have known luminosities by virtue of their intrinsic proprieties and play a major role in our understanding of modern cosmology. The main caveats associated with standard candles are their absolute calibration, contamination of the sample from other sources and systematic uncertainties. The absolute calibration mainly depends on their chemical composition and age. To understand the impact of these effects on the distance scale, it is essential to develop methods based on different sample of standard candles. Here we review the fundamental properties of young and intermediate-age distance indicators such as Cepheids, Mira variables and Red Clump stars and the recent developments in their application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in Space Science Reviews (Chapter 3 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age
    corecore