7,796 research outputs found
The airborne lava-seawater interaction plume at Kilauea Volcano, Hawaii
Petrology igneous metamorphic and volcanic studies; medm0
Overcoming Barriers in Supply Chain Analytics—Investigating Measures in LSCM Organizations
While supply chain analytics shows promise regarding value, benefits, and increase in performance for logistics and supply chain management (LSCM) organizations, those organizations are often either reluctant to invest or unable to achieve the returns they aspire to. This article systematically explores the barriers LSCM organizations experience in employing supply chain analytics that contribute to such reluctance and unachieved returns and measures to overcome these barriers. This article therefore aims to systemize the barriers and measures and allocate measures to barriers in order to provide organizations with directions on how to cope with their individual barriers. By using Grounded Theory through 12 in-depth interviews and Q-Methodology to synthesize the intended results, this article derives core categories for the barriers and measures, and their impacts and relationships are mapped based on empirical evidence from various actors along the supply chain. Resultingly, the article presents the core categories of barriers and measures, including their effect on different phases of the analytics solutions life cycle, the explanation of these effects, and accompanying examples. Finally, to address the intended aim of providing directions to organizations, the article provides recommendations for overcoming the identified barriers in organizations
Coulomb field of an accelerated charge: physical and mathematical aspects
The Maxwell field equations relative to a uniformly accelerated frame, and
the variational principle from which they are obtained, are formulated in terms
of the technique of geometrical gauge invariant potentials. They refer to the
transverse magnetic (TM) and the transeverse electric (TE) modes. This gauge
invariant "2+2" decomposition is used to see how the Coulomb field of a charge,
static in an accelerated frame, has properties that suggest features of
electromagnetism which are different from those in an inertial frame. In
particular, (1) an illustrative calculation shows that the Larmor radiation
reaction equals the electrostatic attraction between the accelerated charge and
the charge induced on the surface whose history is the event horizon, and (2) a
spectral decomposition of the Coulomb potential in the accelerated frame
suggests the possibility that the distortive effects of this charge on the
Rindler vacuum are akin to those of a charge on a crystal lattice.Comment: 27 pages, PlainTex. Related papers available at
http://www.math.ohio-state.edu/~gerlac
Natural linewidth analysis of d-band photoemission from Ag(110)
We report a high-resolution angle-resolved study of photoemission linewidths
observed for Ag(110). A careful data analysis yields kdd\tau_h \geq 22
d$-hole dynamics in Cu (I.\
Campillo et al., Phys. Rev. Lett., in press) we interpret the lifetime
enhancement by a small scattering cross-section of - and -states below
the Fermi level. With increasing distance to the -hole lifetimes get
shorter because of the rapidly increasing density of d-states and contributions
of intra--band scattering processes, but remain clearly above
free-electron-model predictions.Comment: 14 pages, 7 figure
Orientational Ordering of Nonplanar Phthalocyanines on Cu(111): Strength and Orientation of the Electric Dipole Moment
In order to investigate the orientational ordering of molecular dipoles and
the associated electronic properties, we studied the adsorption of
chlorogallium phthalocyanine molecules (GaClPc, Pc=C_32N_8H_16) on Cu(111)
using the X-ray standing wave technique, photoelectron spectroscopy, and
quantum chemical calculations. We find that for sub-monolayer coverages on
Cu(111) the majority of GaClPc molecules adsorb in a 'Cl-down' configuration by
forming a covalent bond to the substrate. For bilayer coverages the XSW data
indicate a co-existence of the 'Cl-down' and 'Cl-up' configuration on the
substrate. The structural details established for both cases and supplementary
calculations of the adsorbate system allow us to analyze the observed change of
the work function.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let
Quantum Mechanical Carrier of the Imprints of Gravitation
We exhibit a purely quantum mechanical carrier of the imprints of gravitation
by identifying for a relativistic system a property which (i) is independent of
its mass and (ii) expresses the Poincare invariance of spacetime in the absence
of gravitation. This carrier consists of the phase and amplitude correlations
of waves in oppositely accelerating frames. These correlations are expressed as
a Klein-Gordon-equation-determined vector field whose components are the
``Planckian power'' and the ``r.m.s. thermal fluctuation'' spectra. The
imprints themselves are deviations away from this vector field.Comment: 8 pages, RevTex. Html version of this and related papers on
accelerated frames available at http://www.math.ohio-state.edu/~gerlac
Bubble wall perturbations coupled with gravitational waves
We study a coupled system of gravitational waves and a domain wall which is
the boundary of a vacuum bubble in de Sitter spacetime. To treat the system, we
use the metric junction formalism of Israel. We show that the dynamical degree
of the bubble wall is lost and the bubble wall can oscillate only while the
gravitational waves go across it. It means that the gravitational backreaction
on the motion of the bubble wall can not be ignored.Comment: 23 pages with 3 eps figure
Radiation from Violently Accelerated Bodies
A determination is made of the radiation emitted by a linearly uniformly
accelerated uncharged dipole transmitter. It is found that, first of all, the
radiation rate is given by the familiar Larmor formula, but it is augmented by
an amount which becomes dominant for sufficiently high acceleration. For an
accelerated dipole oscillator, the criterion is that the center of mass motion
become relativistic within one oscillation period. The augmented formula and
the measurements which it summarizes presuppose an expanding inertial
observation frame. A static inertial reference frame will not do. Secondly, it
is found that the radiation measured in the expanding inertial frame is
received with 100% fidelity. There is no blueshift or redshift due to the
accelerative motion of the transmitter. Finally, it is found that a pair of
coherently radiating oscillators accelerating (into opposite directions) in
their respective causally disjoint Rindler-coordinatized sectors produces an
interference pattern in the expanding inertial frame. Like the pattern of a
Young double slit interferometer, this Rindler interferometer pattern has a
fringe spacing which is inversely proportional to the proper separation and the
proper frequency of the accelerated sources. The interferometer, as well as the
augmented Larmor formula, provide a unifying perspective. It joins adjacent
Rindler-coordinatized neighborhoods into a single spacetime arena for
scattering and radiation from accelerated bodies.Comment: 29 pages, 1 figure, Revte
Probing the local dynamics of periodic orbits by the generalized alignment index (GALI) method
As originally formulated, the Generalized Alignment Index (GALI) method of
chaos detection has so far been applied to distinguish quasiperiodic from
chaotic motion in conservative nonlinear dynamical systems. In this paper we
extend its realm of applicability by using it to investigate the local dynamics
of periodic orbits. We show theoretically and verify numerically that for
stable periodic orbits the GALIs tend to zero following particular power laws
for Hamiltonian flows, while they fluctuate around non-zero values for
symplectic maps. By comparison, the GALIs of unstable periodic orbits tend
exponentially to zero, both for flows and maps. We also apply the GALIs for
investigating the dynamics in the neighborhood of periodic orbits, and show
that for chaotic solutions influenced by the homoclinic tangle of unstable
periodic orbits, the GALIs can exhibit a remarkable oscillatory behavior during
which their amplitudes change by many orders of magnitude. Finally, we use the
GALI method to elucidate further the connection between the dynamics of
Hamiltonian flows and symplectic maps. In particular, we show that, using for
the computation of GALIs the components of deviation vectors orthogonal to the
direction of motion, the indices of stable periodic orbits behave for flows as
they do for maps.Comment: 17 pages, 9 figures (accepted for publication in Int. J. of
Bifurcation and Chaos
Ion-tracer anemometer
Gas velocity measuring instrument measures transport time of ion-trace traveling fixed distance between ionization probe and detector probe. Electric field superimposes drift velocity onto flow velocity so travel times can be reduced to minimize ion diffusion effects
- …
