2,543 research outputs found
Black hole information, unitarity, and nonlocality
The black hole information paradox apparently indicates the need for a
fundamentally new ingredient in physics. The leading contender is nonlocality.
Possible mechanisms for the nonlocality needed to restore unitarity to black
hole evolution are investigated. Suggestions that such dynamics arises from
ultra-planckian modes in Hawking's derivation are investigated and found not to
be relevant, in a picture using smooth slices spanning the exterior and
interior of the horizon. However, no simultaneous description of modes that
have fallen into the black hole and outgoing Hawking modes can be given without
appearance of a large kinematic invariant, or other dependence on
ultra-planckian physics; a reliable argument for information loss thus has not
been constructed. This suggests that strong gravitational dynamics is
important. Such dynamics has been argued to be fundamentally nonlocal in
extreme situations, such as those required to investigate the fate of
information.Comment: 34 pages, 4 figures. Major revision of hep-th/0604047. v2: minor
corrections and added referenc
Performance tests for the NASA Ames Research Center 20 cm x 40 cm oscillating flow wind tunnel
An evaluation is presented of initial tests conducted to assess the performance of the NASA Ames 20 cm x 40 cm oscillating flow wind tunnel. The features of the tunnel are described and two aspects of tunnel operation are discussed. The first is an assessment of the steady mainstream and boundary layer flows and the second deals with oscillating mainstream and boundary layer flows. Experimental results indicate that in steady flow the test section mainstream velocity is uniform in the flow direction and in cross section. The freestream turbulence intensity is about 0.2 percent. With minor exceptions the steady turbulent boundary layer generated on the top wall of the test section exhibits the characteristics of a zero pressure gradient turbulent boundary layer generated on a flat plate. The tunnel was designed to generate sinusoidal oscillating mainstream flows. Experiments confirm that the tunnel produces sinusoidal mainstream velocity variations for the range of frequencies (up to 15 Hz). The results of this study demonstrate that the tunnel essentially produces the flows that it was designed to produce
Response of hot element flush wall gauges in oscillating laminar flow
The time dependent response characteristics of flush-mounted hot element gauges used as instruments to measure wall shear stress in unsteady periodic air flows were investigated. The study was initiated because anomalous results were obtained from the gauges in oscillating turbulent flows for the phase relation of the wall shear stress variation, indicating possible gauge response problems. Flat plate laminar oscillating turbulent flows characterized by a mean free stream velocity with a superposed sinusoidal variation were performed. Laminar rather than turbulent flows were studied, because a numerical solution for the phase angle between the free stream velocity and the wall shear stress variation that is known to be correct can be obtained. The focus is on comparing the phase angle indicated by the hot element gauges with corresponding numerical prediction for the phase angle, since agreement would indicate that the hot element gauges faithfully follow the true wall shear stress variation
Is string theory a theory of quantum gravity?
Some problems in finding a complete quantum theory incorporating gravity are
discussed. One is that of giving a consistent unitary description of
high-energy scattering. Another is that of giving a consistent quantum
description of cosmology, with appropriate observables. While string theory
addresses some problems of quantum gravity, its ability to resolve these
remains unclear. Answers may require new mechanisms and constructs, whether
within string theory, or in another framework.Comment: Invited contribution for "Forty Years of String Theory: Reflecting on
the Foundations," a special issue of Found. Phys., ed. by G 't Hooft, E.
Verlinde, D. Dieks, S. de Haro. 32 pages, 5 figs., harvmac. v2: final version
to appear in journal (small revisions
Nonlocality vs. complementarity: a conservative approach to the information problem
A proposal for resolution of the information paradox is that "nice slice"
states, which have been viewed as providing a sharp argument for information
loss, do not in fact do so as they do not give a fully accurate description of
the quantum state of a black hole. This however leaves an information
*problem*, which is to provide a consistent description of how information
escapes when a black hole evaporates. While a rather extreme form of
nonlocality has been advocated in the form of complementarity, this paper
argues that is not necessary, and more modest nonlocality could solve the
information problem. One possible distinguishing characteristic of scenarios is
the information retention time. The question of whether such nonlocality
implies acausality, and particularly inconsistency, is briefly addressed. The
need for such nonlocality, and its apparent tension with our empirical
observations of local quantum field theory, may be a critical missing piece in
understanding the principles of quantum gravity.Comment: 11 pages of text and figures, + references. v2 minor text. v3 small
revisions to match final journal versio
Precursors, black holes, and a locality bound
We revisit the problem of precursors in the AdS/CFT correspondence.
Identification of the precursors is expected to improve our understanding of
the tension between holography and bulk locality and of the resolution of the
black hole information paradox. Previous arguments that the precursors are
large, undecorated Wilson loops are found to be flawed. We argue that the role
of precursors should become evident when one saturates a certain locality
bound. The spacetime uncertainty principle is a direct consequence of this
bound.Comment: 26 pages, 8 figs; reference added, minor clarification in sec. 2;
incorrect draft mistakenly used in version
Locality in quantum gravity and string theory
Breakdown of local physics in string theory at distances longer than the
string scale is investigated. Such nonlocality would be expected to be visible
in ultrahigh-energy scattering. The results of various approaches to such
scattering are collected and examined. No evidence is found for non-locality
from strings whose length grows linearly with the energy. However, local
quantum field theory does apparently fail at scales determined by gravitational
physics, particularly strong gravitational dynamics. This amplifies locality
bound arguments that such failure of locality is a fundamental aspect of
physics. This kind of nonlocality could be a central element of a possible
loophole in the argument for information loss in black holes.Comment: 26 pages, 3 figures, harvmac. v2: minor changes to bring into accord
with revised paper hep-th/060519
Comments on information loss and remnants
The information loss and remnant proposals for resolving the black hole
information paradox are reconsidered. It is argued that in typical cases
information loss implies energy loss, and thus can be thought of in terms of
coupling to a spectrum of ``fictitious'' remnants. This suggests proposals for
information loss that do not imply planckian energy fluctuations in the low
energy world. However, if consistency of gravity prevents energy
non-conservation, these remnants must then be considered to be real. In either
case, the catastrophe corresponding to infinite pair production remains a
potential problem. Using Reissner-Nordstrom black holes as a paradigm for a
theory of remnants, it is argued that couplings in such a theory may give
finite production despite an infinite spectrum. Evidence for this is found in
analyzing the instanton for Schwinger production; fluctuations from the
infinite number of states lead to a divergent stress tensor, spoiling the
instanton calculation. Therefore naive arguements for infinite production fail.Comment: 30 pages (harvmac l mode) UCSBTH-93-35 (minor reference and typo
corrections
Interacting Strings in Matrix String Theory
It is here explained how the Green-Schwarz superstring theory arises from
Matrix String Theory. This is obtained as the strong YM-coupling limit of the
theory expanded around its BPS instantonic configurations, via the
identification of the interacting string diagram with the spectral curve of the
relevant configuration. Both the GS action and the perturbative weight
, where is the Euler characteristic of the world-sheet
surface and the string coupling, are obtained.Comment: 11 pages, no figures, two references adde
- …
