4,199 research outputs found

    Hole spin dynamics and hole gg factor anisotropy in coupled quantum well systems

    Get PDF
    Due to its p-like character, the valence band in GaAs-based heterostructures offers rich and complex spin-dependent phenomena. One manifestation is the large anisotropy of Zeeman spin splitting. Using undoped, coupled quantum wells (QWs), we examine this anisotropy by comparing the hole spin dynamics for high- and low-symmetry crystallographic orientations of the QWs. We directly measure the hole gg factor via time-resolved Kerr rotation, and for the low-symmetry crystallographic orientations (110) and (113a), we observe a large in-plane anisotropy of the hole gg factor, in good agreement with our theoretical calculations. Using resonant spin amplification, we also observe an anisotropy of the hole spin dephasing in the (110)-grown structure, indicating that crystal symmetry may be used to control hole spin dynamics

    Studies of aging and HV break down problems during development and operation of MSGC and GEM detectors for the Inner Tracking System of HERA-B

    Get PDF
    The results of five years of development of the inner tracking system of the HERA-B experiment and first experience from the data taking period of the year 2000 are reported. The system contains 184 chambers, covering a sensitive area of about 20 * 20 cm2 each. The detector is based on microstrip gas counters (MSGCs) with diamond like coated (DLC) glass wafers and gas electron multipliers (GEMs). The main problems in the development phase were gas discharges in intense hadron beams and aging in a high radiation dose environment. The observation of gas discharges which damage the electrode structure of the MSGC led to the addition of the GEM as a first amplification step. Spurious sparking at the GEM cannot be avoided completely. It does not affect the GEM itself but can produce secondary damage of the MSGC if the electric field between the GEM and the MSGC is above a threshold depending on operation conditions. We observed that aging does not only depend on the dose but also on the spot size of the irradiated area. Ar-DME mixtures had to be abandoned whereas a mixture of 70% Ar and 30% CO2 showed no serious aging effects up to about 40 mC/cm deposited charge on the anodes. X-ray measurements indicate that the DLC of the MSGC is deteriorated by the gas amplification process. As a consequence, long term gain variations are expected. The Inner Tracker has successfully participated in the data taking at HERA-B during summer 2000.Comment: 29 pages, 22 figure

    Spin dynamics in p-doped semiconductor nanostructures subject to a magnetic field tilted from the Voigt geometry

    Get PDF
    We develop a theoretical description of the spin dynamics of resident holes in a p-doped semiconductor quantum well (QW) subject to a magnetic field tilted from the Voigt geometry. We find the expressions for the signals measured in time-resolved Faraday rotation (TRFR) and resonant spin amplification (RSA) experiments and study their behavior for a range of system parameters. We find that an inversion of the RSA peaks can occur for long hole spin dephasing times and tilted magnetic fields. We verify the validity of our theoretical findings by performing a series of TRFR and RSA experiments on a p-modulation doped GaAs/Al_{0.3}Ga_{0.7}As single QW and showing that our model can reproduce experimentally observed signals.Comment: 9 pages, 3 figures; corrected typo

    Synthesis of mono and multidomain YIG particles by chemical coprecipitation or ceramic procedure

    Get PDF
    4 páginas, 3 figuras.Yttrium iron garnet powders have been synthesized by chemical coprecipitation using two different precursors, nitrates and chlorides, and by an oxides mixture route. It is shown that depending on the precursors and synthesis conditions used pure yttrium iron garnet powders can be obtained with a mono or multidomain magnetic behaviour. The yttrium iron garnet crystalline structure, as studied by Raman spectroscopy, was already formed after calcination at temperatures as low as 800 °C when the nitrate precursors were used. However, calcination temperatures of up to 1100 °C were required to obtain yttrium iron garnet powders when the precursors were chlorides or when the oxides mixture route was chosen. The saturation magnetization of the powders correlates well with the structural characterization: when nitrate precursors were used, the saturation magnetization was already close to the bulk value, 26.8 emu/cm3, after calcination at 800 °C. However, the saturation magnetization of the powders obtained by the chlorides and oxides mixture routes was close to zero up to calcination temperatures of 1100 °C. Finally, both the chlorides and the oxides mixture routes yield multidomain micron sized yttrium iron garnet powders, whereas the nitrates route led to monodomain submicron sized powders.The authors want to acknowledge the Spanish Ministry of Education and Science and UE for funding through project MAT2009-14534-C03-03. One of us, L. Fernandez-Garcia, wants to acknowledge JAE program for PhD grant.Peer reviewe

    Issues and Opportunities in Exotic Hadrons

    Full text link
    The last few years have been witness to a proliferation of new results concerning heavy exotic hadrons. Experimentally, many new signals have been discovered that could be pointing towards the existence of tetraquarks, pentaquarks, and other exotic configurations of quarks and gluons. Theoretically, advances in lattice field theory techniques place us at the cusp of understanding complex coupled-channel phenomena, modelling grows more sophisticated, and effective field theories are being applied to an ever greater range of situations. It is thus an opportune time to evaluate the status of the field. In the following, a series of high priority experimental and theoretical issues concerning heavy exotic hadrons is presented.Comment: White paper from INT workshop, "Modern Exotic Hadrons". References added. Version to appear in Chinese Physics

    Open and Hidden Charm Production in 920 GeV Proton-Nucleus Collisions

    Full text link
    The HERA-B collaboration has studied the production of charmonium and open charm states in collisions of 920 GeV protons with wire targets of different materials. The acceptance of the HERA-B spectrometer covers negative values of xF up to xF=-0.3 and a broad range in transverse momentum from 0.0 to 4.8 GeV/c. The studies presented in this paper include J/psi differential distributions and the suppression of J/psi production in nuclear media. Furthermore, production cross sections and cross section ratios for open charm mesons are discussed.Comment: 5 pages, 9 figures, to be published in the proceedings of the 6th International Conference on Hyperons, Charm & Beauty Hadrons (BEACH04), Chicago, IL, June 27 - July 3, 200

    Measurements of double-polarized compton scattering asymmetries and extraction of the proton spin polarizabilities

    Get PDF
    The spin polarizabilities of the nucleon describe how the spin of the nucleon responds to an incident polarized photon. The most model-independent way to extract the nucleon spin polarizabilities is through polarized Compton scattering. Double-polarized Compton scattering asymmetries on the proton were measured in the Δ(1232) region using circularly polarized incident photons and a transversely polarized proton target at the Mainz Microtron. Fits to asymmetry data were performed using a dispersion model calculation and a baryon chiral perturbation theory calculation, and a separation of all four proton spin polarizabilities in the multipole basis was achieved. The analysis based on a dispersion model calculation yields γE1E1=−3.5±1.2, γM1M1=3.16±0.85, γE1M2=−0.7±1.2, and γM1E2=1.99±0.29, in units of 10−4  fm4

    Inclusive V0V^0 Production Cross Sections from 920 GeV Fixed Target Proton-Nucleus Collisions

    Full text link
    Inclusive differential cross sections dσpA/dxFd\sigma_{pA}/dx_F and dσpA/dpt2d\sigma_{pA}/dp_t^2 for the production of \kzeros, \lambdazero, and \antilambda particles are measured at HERA in proton-induced reactions on C, Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to s=41.6\sqrt {s} = 41.6 GeV in the proton-nucleon system. The ratios of differential cross sections \rklpa and \rllpa are measured to be 6.2±0.56.2\pm 0.5 and 0.66±0.070.66\pm 0.07, respectively, for \xf 0.06\approx-0.06. No significant dependence upon the target material is observed. Within errors, the slopes of the transverse momentum distributions dσpA/dpt2d\sigma_{pA}/dp_t^2 also show no significant dependence upon the target material. The dependence of the extrapolated total cross sections σpA\sigma_{pA} on the atomic mass AA of the target material is discussed, and the deduced cross sections per nucleon σpN\sigma_{pN} are compared with results obtained at other energies.Comment: 17 pages, 7 figures, 5 table

    T and F asymmetries in π0 photoproduction on the proton

    Get PDF
    The γp→π0p reaction was studied at laboratory photon energies from 425 to 1445 MeV with a transversely polarized target and a longitudinally polarized beam. The beam-target asymmetry F was measured for the first time and new high precision data for the target asymmetry T were obtained. The experiment was performed at the photon tagging facility of the Mainz Microtron (MAMI) using the Crystal Ball and TAPS photon spectrometers. The polarized cross sections were expanded in terms of associated Legendre functions and compared to recent predictions from several partial-wave analyses. The impact of the new data on our understanding of the underlying partial-wave amplitudes and baryon resonance contributions is discussed
    corecore