138 research outputs found
New enzymes with potential for PET surface modification
This work describes newly isolated organisms and their potential to modify the surface of polyethylene terephthalate
(PET). Out of the different screening processes, four bacterial and five fungal strains were isolated. A PET model substrate was synthesized (bis (benzoyloxyethyl) terephthalate) and used in the screening
process, mimicking the polymer in its crucial properties and having the advantage of defined hydrolysis products. On this model substrate, extracellular enzyme preparations from the isolated microorganisms showed a maximum activity of 8.54 nkat/L. All enzyme preparations showed esterase activity on p-nitrophenyl-acetate while no activity was found on p-nitrophenyl decanoate or p-nitrophenyl palmitate. Increased hydrophilicity of PET fabrics after enzyme treatment was found based on rising height and water dissipation measurements
Medication Persistence Rates and Factors Associated with Persistence in Patients Following Stroke: A Cohort Study
Abstract Background Medication nonadherence can be as high as 50% and results in suboptimal patient outcomes. Stroke patients in particular can benefit from pharmacotherapy for thrombosis, hypertension, and dyslipidemia but are at high risk for medication nonpersistence. Methods Patients who were admitted to the Queen Elizabeth II Health Sciences Centre in Halifax, Nova Scotia, with stroke between January 1, 2001 and December 31, 2002 were analyzed. Data collected were pre-stroke function, stroke subtype, stroke severity, patient outcomes, and medication use at discharge, and six and 12 months post discharge. Medication persistence at six and 12 months and the factors associated with nonpersistence at six months were examined using multivariable stepwise logistic regression. Results At discharge, 420 patients (mean age 68.2 years, 55.7% male) were prescribed an average of 6.4 medications and mean prescription drug cost was $167 monthly. Antihypertensive (91%) and antithrombotic (96%) drug use at discharge were frequent, antilipidemic (73%) and antihyperglycemic (25%) drug use were less common. Self-reported persistence at six and 12 months after stroke was high (> 90%) for all categories. In the multivariable model of medication nonpersistence at six months, people aged 65 to 79 years were less likely to be nonpersistent with antihypertensive medications than people aged 80 years or more (Odds ratio (OR) 0.11, 95% Confidence Interval (CI) 0.03–0.39). Monthly drug costs of Conclusion Patients reported high medication persistence rates six and 12 months after stroke. Identification of factors associated with nonpersistence (such as older age and prior disability) will help predict which patients are at higher risk for discontinuing their medications.</p
A call for transparent reporting to optimize the predictive value of preclinical research
The US National Institute of Neurological Disorders and Stroke convened major stakeholders in June 2012 to discuss how to improve the methodological reporting of animal studies in grant applications and publications. The main workshop recommendation is that at a minimum studies should report on sample-size estimation, whether and how animals were randomized, whether investigators were blind to the treatment, and the handling of data. We recognize that achieving a meaningful improvement in the quality of reporting will require a concerted effort by investigators, reviewers, funding agencies and journal editors. Requiring better reporting of animal studies will raise awareness of the importance of rigorous study design to accelerate scientific progress
Is primary care a neglected piece of the jigsaw in ensuring optimal stroke care? Results of a national study
<p>Abstract</p> <p>Background</p> <p>Stroke is a major cause of mortality and morbidity with potential for improved care and prevention through general practice. A national survey was undertaken to determine current resources and needs for optimal stroke prevention and care.</p> <p>Methods</p> <p>Postal survey of random sample of general practitioners undertaken (N = 204; 46% response). Topics included practice organisation, primary prevention, acute management, secondary prevention, long-term care and rehabilitation.</p> <p>Results</p> <p>Service organisation for both primary and secondary prevention was poor. Home management of acute stroke patients was used at some stage by 50% of responders, accounting for 7.3% of all stroke patients. Being in a structured cardiovascular management scheme, a training practice, a larger practice, or a practice employing a practice nurse were associated with structures and processes likely to support stroke prevention and care.</p> <p>Conclusion</p> <p>General practices were not fulfilling their potential to provide stroke prevention and long-term management. Systems of structured stroke management in general practice are essential to comprehensive national programmes of stroke care.</p
Is the functional interaction between adenosine A2A receptors and metabotropic glutamate 5 receptors a general mechanism in the brain? Differences and similarities between the striatum and the hippocampus
The aim of the present paper was to examine, in a comparative way, the occurrence and the mechanisms of the interactions between adenosine A2A receptors (A2ARs) and metabotropic glutamate 5 receptors (mGlu5Rs) in the hippocampus and the striatum. In rat hippocampal and corticostriatal slices, combined ineffective doses of the mGlu5R agonist 2-chloro-5-hydroxyphenylglycine (CHPG) and the A2AR agonist CGS 21680 synergistically reduced the slope of excitatory postsynaptic field potentials (fEPSPs) recorded in CA1 and the amplitude of field potentials (FPs) recorded in the dorsomedial striatum. The cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway appeared to be involved in the effects of CGS 21680 in corticostriatal but not in hippocampal slices. In both areas, a postsynaptic locus of interaction appeared more likely. N-methyl-D-aspartate (NMDA) reduced the fEPSP slope and FP amplitude in hippocampal and corticostriatal slices, respectively. Such an effect was significantly potentiated by CHPG in both areas. Interestingly, the A2AR antagonist ZM 241385 significantly reduced the NMDA-potentiating effect of CHPG. In primary cultures of rat hippocampal and striatal neurons (ED 17, DIV 14), CHPG significantly potentiated NMDA-induced lactate dehydrogenase (LDH) release. Again, such an effect was prevented by ZM 241385. Our results show that A2A and mGlu5 receptors functionally interact both in the hippocampus and in the striatum, even though different mechanisms seem to be involved in the two areas. The ability of A2ARs to control mGlu5R-dependent effects may thus be a general feature of A2ARs in different brain regions (irrespective of their density) and may represent an additional target for the development of therapeutic strategies against neurological disorders
Identification of Gemin5 as a Novel 7-Methylguanosine Cap-Binding Protein
A unique attribute of RNA molecules synthesized by RNA polymerase II is the presence of a 7-methylguanosine (m(7)G) cap structure added co-transcriptionally to the 5' end. Through its association with trans-acting effector proteins, the m(7)G cap participates in multiple aspects of RNA metabolism including localization, translation and decay. However, at present relatively few eukaryotic proteins have been identified as factors capable of direct association with m(7)G.Employing an unbiased proteomic approach, we identified gemin5, a component of the survival of motor neuron (SMN) complex, as a factor capable of direct and specific interaction with the m(7)G cap. Gemin5 was readily purified by cap-affinity chromatography in contrast to other SMN complex proteins. Investigating the underlying basis for this observation, we found that purified gemin5 associates with m(7)G-linked sepharose in the absence of detectable eIF4E, and specifically crosslinks to radiolabeled cap structure after UV irradiation. Deletion analysis revealed that an intact set of WD repeat domains located in the N-terminal half of gemin5 are required for cap-binding. Moreover, using structural modeling and site-directed mutagenesis, we identified two proximal aromatic residues located within the WD repeat region that significantly impact m(7)G association.This study rigorously identifies gemin5 as a novel cap-binding protein and describes an unprecedented role for WD repeat domains in m(7)G recognition. The findings presented here will facilitate understanding of gemin5's role in the metabolism of non-coding snRNAs and perhaps other RNA pol II transcripts
Similar Genetic Mechanisms Underlie the Parallel Evolution of Floral Phenotypes
The repeated origin of similar phenotypes is invaluable for studying the underlying genetics of adaptive traits; molecular evidence, however, is lacking for most examples of such similarity. The floral morphology of neotropical Malpighiaceae is distinctive and highly conserved, especially with regard to symmetry, and is thought to result from specialization on oil-bee pollinators. We recently demonstrated that CYCLOIDEA2–like genes (CYC2A and CYC2B) are associated with the development of the stereotypical floral zygomorphy that is critical to this plant–pollinator mutualism. Here, we build on this developmental framework to characterize floral symmetry in three clades of Malpighiaceae that have independently lost their oil bee association and experienced parallel shifts in their floral morphology, especially in regard to symmetry. We show that in each case these species exhibit a loss of CYC2B function, and a strikingly similar shift in the expression of CYC2A that is coincident with their shift in floral symmetry. These results indicate that similar floral phenotypes in this large angiosperm clade have evolved via parallel genetic changes from an otherwise highly conserved developmental program
Role of Cajal Bodies and Nucleolus in the Maturation of the U1 snRNP in Arabidopsis
Background: The biogenesis of spliceosomal snRNPs takes place in both the cytoplasm where Sm core proteins are added and snRNAs are modified at the 59 and 39 termini and in the nucleus where snRNP-specific proteins associate. U1 snRNP consists of U1 snRNA, seven Sm proteins and three snRNP-specific proteins, U1-70K, U1A, and U1C. It has been shown previously that after import to the nucleus U2 and U4/U6 snRNP-specific proteins first appear in Cajal bodies (CB) and then in splicing speckles. In addition, in cells grown under normal conditions U2, U4, U5, and U6 snRNAs/snRNPs are abundant in CBs. Therefore, it has been proposed that the final assembly of these spliceosomal snRNPs takes place in this nuclear compartment. In contrast, U1 snRNA in both animal and plant cells has rarely been found in this nuclear compartment. Methodology/Principal Findings: Here, we analysed the subnuclear distribution of Arabidopsis U1 snRNP-specific proteins fused to GFP or mRFP in transiently transformed Arabidopsis protoplasts. Irrespective of the tag used, U1-70K was exclusively found in the nucleus, whereas U1A and U1C were equally distributed between the nucleus and the cytoplasm. In the nucleus all three proteins localised to CBs and nucleoli although to different extent. Interestingly, we also found that the appearance of the three proteins in nuclear speckles differ significantly. U1-70K was mostly found in speckles whereas U1A and U1C in,90 % of cells showed diffuse nucleoplasmic in combination with CBs and nucleolar localisation. Conclusions/Significance: Our data indicate that CBs and nucleolus are involved in the maturation of U1 snRNP. Difference
Role of Cajal Bodies and Nucleolus in the Maturation of the U1 snRNP in Arabidopsis
Background: The biogenesis of spliceosomal snRNPs takes place in both the cytoplasm where Sm core proteins are added and snRNAs are modified at the 59 and 39 termini and in the nucleus where snRNP-specific proteins associate. U1 snRNP consists of U1 snRNA, seven Sm proteins and three snRNP-specific proteins, U1-70K, U1A, and U1C. It has been shown previously that after import to the nucleus U2 and U4/U6 snRNP-specific proteins first appear in Cajal bodies (CB) and then in splicing speckles. In addition, in cells grown under normal conditions U2, U4, U5, and U6 snRNAs/snRNPs are abundant in CBs. Therefore, it has been proposed that the final assembly of these spliceosomal snRNPs takes place in this nuclear compartment. In contrast, U1 snRNA in both animal and plant cells has rarely been found in this nuclear compartment. Methodology/Principal Findings: Here, we analysed the subnuclear distribution of Arabidopsis U1 snRNP-specific proteins fused to GFP or mRFP in transiently transformed Arabidopsis protoplasts. Irrespective of the tag used, U1-70K was exclusively found in the nucleus, whereas U1A and U1C were equally distributed between the nucleus and the cytoplasm. In the nucleus all three proteins localised to CBs and nucleoli although to different extent. Interestingly, we also found that the appearance of the three proteins in nuclear speckles differ significantly. U1-70K was mostly found in speckles whereas U1A and U1C in,90 % of cells showed diffuse nucleoplasmic in combination with CBs and nucleolar localisation. Conclusions/Significance: Our data indicate that CBs and nucleolus are involved in the maturation of U1 snRNP. Difference
- …
