849 research outputs found

    Constraints on Conformal Windows from Holographic Duals

    Full text link
    We analyze a beta function with the analytic form of Novikov-Shifman-Vainshtein-Zakharov result in the five dimensional gravity-dilaton environment. We show how dilaton inherits poles and fixed points of such beta function through the zeros and points of extremum in its potential. Super Yang-Mills and supersymmetric QCD are studied in detail and Seiberg's electric-magnetic duality in the dilaton potential is explicitly demonstrated. Non-supersymmetric proposals of similar functional form are tested and new insights into the conformal window as well as determinations of scheme-independent value of the anomalous dimension at the fixed point are presented.Comment: Fig. 5b is corrected to match the discussion in the tex

    A Holographic Model of Strange Metals

    Full text link
    We give a review on our recent work arXiv:1006.0779 [hep-th] and arXiv:1006.1719 [hep-th], in which properties of holographic strange metals were investigated. The background is chosen to be anisotropic scaling solution in Einstein-Maxwell-Dilaton theory with a Liouville potential. The effects of bulk Maxwell field, an extra U(1) gauge field and probe D-branes on the DC conductivity, the DC Hall conductivity and the AC conductivity are extensively analyzed. We classify behaviors of the conductivities according to the parameter ranges in the bulk theory and characterize conditions when the holographic results can reproduce experimental data.Comment: 34 pages, 15 figures, minor correction

    Dressed spectral densities for heavy quark diffusion in holographic plasmas

    Full text link
    We analyze the large frequency behavior of the spectral densities that govern the generalized Langevin diffusion process for a heavy quark in the context of the gauge/gravity duality. The bare Langevin correlators obtained from the trailing string solution have a singular short-distance behavior. We argue that the proper dressed spectral functions are obtained by subtracting the zero-temperature correlators. The dressed spectral functions have a sufficiently fast fall-off at large frequency so that the Langevin process is well defined and the dispersion relations are satisfied. We identify the cases in which the subtraction does not modify the associated low-frequency transport coefficients. These include conformal theories and the non-conformal, non-confining models. We provide several analytic and numerical examples in conformal and non-conformal holographic backgrounds.Comment: 51 pages, 2 figure

    On the YM and QCD spectra from five dimensional strings

    Full text link
    We consider a non-critical five dimensional string setup which could provide a dual description of QCD in the limit of large number of colors and flavors. The model corresponds to N_c color D3-branes and N_f D4/anti D4-brane pairs supporting flavor degrees of freedom. The matching of the string model spectrum with the dual field theory one is considered. We discuss the consequences of the possible matching of the gravity modes with the light glueballs and the interpretation of the brane spectrum in Yang-Mills and QCD.Comment: 21 pages; V2: added corrections and references to match the published versio

    Holography and Thermodynamics of 5D Dilaton-gravity

    Full text link
    The asymptotically-logarithmically-AdS black-hole solutions of 5D dilaton gravity with a monotonic dilaton potential are analyzed in detail. Such theories are holographically very close to pure Yang-Mills theory in four dimensions. The existence and uniqueness of black-hole solutions is shown. It is also shown that a Hawking-Page transition exists at finite temperature if and only if the potential corresponds to a confining theory. The physics of the transition matches in detail with that of deconfinement of the Yang-Mills theory. The high-temperature phase asymptotes to a free gluon gas at high temperature matching the expected behavior from asymptotic freedom. The thermal gluon condensate is calculated and shown to be crucial for the existence of a non-trivial deconfining transition. The condensate of the topological charge is shown to vanish in the deconfined phase.Comment: LaTeX, 61 pages (main body) + 58 pages (appendix), 25 eps figures. Revised version, published in JHEP. Two equations added in Section 7.4; typos corrected; references adde

    A note on the universality of the Hagedorn behavior of pp-wave strings

    Get PDF
    Following on from recent studies of string theory on a one-parameter family of integrable deformations of AdS5×S5AdS_{5}\times S^{5} proposed by Lunin and Maldacena, we carry out a systematic analysis of the high temperature properties of type IIB strings on the associated pp-wave geometries. In particular, through the computation of the thermal partition function and free energy we find that not only does the theory exhibit a Hagedorn transition in both the (J,0,0)(J,0,0) and (J,J,J)(J,J,J) class of pp-waves, but that the Hagedorn temperature is insensitive to the deformation suggesting an interesting universality in the high temperature behaviour of the pp-wave string theory. We comment also on the implications of this universality on the confinement/deconfinement transition in the dual N=1\mathcal{N}=1 Leigh-Strassler deformation of N=4{\cal N}=4 Yang-Mills theory.Comment: 25 pages; fixed minor typo; added reference

    The Penrose limit of AdS*S space and holography

    Full text link
    In the Penrose limit, AdS*S space turns into a Cahen-Wallach (CW) space whose Killing vectors satisfy a Heisenberg algebra. This algebra is mapped onto the holographic screen on the boundary of AdS. I show that the Heisenberg algebra on the boundary of AdS may be obtained directly from the CW space by appropriately constraining the states defined on it. The transformations generated by the constraint are similar to gauge transformations. The ``holographic screen'' on the CW space is thus obtained as a ``gauge-fixing'' condition.Comment: 12 pages, improved discussion, to appear in Mod. Phys. Lett.

    Improved Holographic QCD

    Full text link
    We provide a review to holographic models based on Einstein-dilaton gravity with a potential in 5 dimensions. Such theories, for a judicious choice of potential are very close to the physics of large-N YM theory both at zero and finite temperature. The zero temperature glueball spectra as well as their finite temperature thermodynamic functions compare well with lattice data. The model can be used to calculate transport coefficients, like bulk viscosity, the drag force and jet quenching parameters, relevant for the physics of the Quark-Gluon Plasma.Comment: LatEX, 65 pages, 28 figures, 9 Tables. Based on lectures given at several Schools. To appear in the proceedinds of the 5th Aegean School (Milos, Greece

    Branes with fluxes wrapped on spheres

    Get PDF
    Following an eight-dimensional gauged supergravity approach we construct the most general solution describing D6-branes wrapped on a Kahler four-cycle taken to be the product of two spheres of different radii. Our solution interpolates between a Calabi-Yau four-fold and the spaces S^2xS^2xS^2xR^2 or S^2xS^2xR^4, depending on generic choices for the parameters. Then we turn on a background four-form field strength, corresponding to D2-branes, and show explicitly how our solution is deformed. For a particular choice of parameters it represents a flow from a Calabi-Yau four-fold times the three-dimensional Minkowski space-time in the ultraviolet, to the space-time AdS_4xQ^{1,1,1} in the infrared. In general, the solution in the infrared has a singularity which within type-IIA supergravity corresponds to the near horizon geometry of the solution for the D2-D6 system. Finally, we uncover the relation with work done in the eighties on Freund-Rubin type compactifications.Comment: 15 pages, Late
    corecore