484 research outputs found

    Thermodynamics of Field Theories from Spinning Branes

    Get PDF
    We discuss general spinning p-branes of string and M-theory and use their thermodynamics along with the correspondence between near-horizon brane solutions and field theories with 16 supercharges to describe the thermodynamic behavior of these theories in the presence of voltages under the R-symmetry. The thermodynamics is used to provide two pieces of evidence in favor of a smooth interpolation function between the free energy at weak and strong coupling of the field theory. (i) A computation of the boundaries of stability shows that for the D2, D3, D4, M2 and M5-branes the critical values of Omega/T in the two limits are remarkably close and (ii) The tree-level R^4 corrections to the spinning D3-brane generate a decrease in the free energy at strong coupling towards the weak coupling result. We also comment on the generalization to spinning brane bound states and their thermodynamics, which are relevant for non-commutative field theories.Comment: 8 pages, JHEP, Proceedings of TMR workshop Quantum aspects of gauge theories, supersymmetry and unificatio

    New nonuniform black string solutions

    Full text link
    We present nonuniform vacuum black strings in five and six spacetime dimensions. The conserved charges and the action of these solutions are computed by employing a quasilocal formalism. We find qualitative agreement of the physical properties of nonuniform black strings in five and six dimensions. Our results offer further evidence that the black hole and the black string branches merge at a topology changing transition. We generate black string solutions of the Einstein-Maxwell-dilaton theory by using a Harrison transformation. We argue that the basic features of these solutions can be derived from those of the vacuum black string configurations.Comment: 30 pages, 12 figures; v2: more details on numerical method, references added; v3: references added, minor revisions, version accepted by journa

    Phase Structure of Non-Commutative Field Theories and Spinning Brane Bound States

    Get PDF
    General spinning brane bound states are constructed, along with their near-horizon limits which are relevant as dual descriptions of non-commutative field theories. For the spinning D-brane world volume theories with a B-field a general analysis of the gauge coupling phase structure is given, exhibiting various novel features, already at the level of zero angular momenta. We show that the thermodynamics is equivalent to the commutative case at large N and we discuss the possibility and consequences of finite N. As an application of the general analysis, the range of validity of the thermodynamics for the NCSYM is discussed. In view of the recently conjectured existence of a 7-dimensional NCSYM, the thermodynamics of the spinning D6-brane theory, for which a stable region can be found, is presented in detail. Corresponding results for the spinning M5-M2 brane bound state, including the near-horizon limit and thermodynamics, are given as well.Comment: 34 pages, JHEP class. minor corrections, final JHEP versio

    Three-Charge Black Holes on a Circle

    Get PDF
    We study phases of five-dimensional three-charge black holes with a circle in their transverse space. In particular, when the black hole is localized on the circle we compute the corrections to the metric and corresponding thermodynamics in the limit of small mass. When taking the near-extremal limit, this gives the corrections to the constant entropy of the extremal three-charge black hole as a function of the energy above extremality. For the partial extremal limit with two charges sent to infinity and one finite we show that the first correction to the entropy is in agreement with the microscopic entropy by taking into account that the number of branes shift as a consequence of the interactions across the transverse circle. Beyond these analytical results, we also numerically obtain the entire phase of non- and near-extremal three- and two-charge black holes localized on a circle. More generally, we find in this paper a rich phase structure, including a new phase of three-charge black holes that are non-uniformly distributed on the circle. All these three-charge black hole phases are found via a map that relates them to the phases of five-dimensional neutral Kaluza-Klein black holes.Comment: 58 pages, 10 figures; v2: Corrected typos, version appearing in JHE

    Thermodynamics of Spinning Branes and their Dual Field Theories

    Get PDF
    We present a general analysis of the thermodynamics of spinning black p-branes of string and M-theory. This is carried out both for the asymptotically-flat and near-horizon case, with emphasis on the latter. In particular, we use the conjectured correspondence between the near-horizon brane solutions and field theories with 16 supercharges in various dimensions to describe the thermodynamic behavior of these field theories in the presence of voltages under the R-symmetry. Boundaries of stability are computed for all spinning branes both in the grand canonical and canonical ensemble, and the effect of multiple angular momenta is considered. A recently proposed regularization of the field theory is used to compute the corresponding boundaries of stability at weak coupling. For the D2, D3, D4, M2 and M5-branes the critical values of Omega/T in the weak and strong coupling limit are remarkably close. Finally, we also show that for the spinning D3-brane the tree level R^4 correction supports the conjecture of a smooth interpolating function between the free energy at weak and strong coupling.Comment: 59 pages, JHEP class. Minor typos corrected, added remark on positivity of temperature, Sec. 6.1 improved, references adde

    Phases of Kaluza-Klein Black Holes: A Brief Review

    Full text link
    We review the latest progress in understanding the phase structure of static and neutral Kaluza-Klein black holes, i.e. static and neutral solutions of pure gravity with an event horizon that asymptote to a d-dimensional Minkowski-space times a circle. We start by reviewing the (mu,n) phase diagram and the split-up of the phase structure into solutions with an internal SO(d-1) symmetry and solutions with Kaluza-Klein bubbles. We then discuss the uniform black string, non-uniform black string and localized black hole phases, and how those three phases are connected, involving issues such as classical instability and horizon-topology changing transitions. Finally, we review the bubble-black hole sequences, their place in the phase structure and interesting aspects such as the continuously infinite non-uniqueness of solutions for a given mass and relative tension.Comment: 23 pages, 5 figures. v2: Typo fixe

    Stresses and Strains in the First Law for Kaluza-Klein Black Holes

    Get PDF
    We consider how variations in the moduli of the compactification manifold contribute pdV type work terms to the first law for Kaluza-Klein black holes. We give a new proof for the circle case, based on Hamiltonian methods, which demonstrates that the result holds for arbitrary perturbations around a static black hole background. We further apply these methods to derive the first law for black holes in 2-torus compactifications, where there are three real moduli. We find that the result can be simply stated in terms of constructs familiar from the physics of elastic materials, the stress and strain tensors. The strain tensor encodes the change in size and shape of the 2-torus as the moduli are varied. The role of the stress tensor is played by a tension tensor, which generalizes the spacetime tension that enters the first law in the circle case.Comment: 18 pages, 1 figure, Dedicated to Rafael Sorkin in honor of his 60th Birthda

    Sequences of Bubbles and Holes: New Phases of Kaluza-Klein Black Holes

    Full text link
    We construct and analyze a large class of exact five- and six-dimensional regular and static solutions of the vacuum Einstein equations. These solutions describe sequences of Kaluza-Klein bubbles and black holes, placed alternately so that the black holes are held apart by the bubbles. Asymptotically the solutions are Minkowski-space times a circle, i.e. Kaluza-Klein space, so they are part of the (\mu,n) phase diagram introduced in hep-th/0309116. In particular, they occupy a hitherto unexplored region of the phase diagram, since their relative tension exceeds that of the uniform black string. The solutions contain bubbles and black holes of various topologies, including six-dimensional black holes with ring topology S^3 x S^1 and tuboid topology S^2 x S^1 x S^1. The bubbles support the S^1's of the horizons against gravitational collapse. We find two maps between solutions, one that relates five- and six-dimensional solutions, and another that relates solutions in the same dimension by interchanging bubbles and black holes. To illustrate the richness of the phase structure and the non-uniqueness in the (\mu,n) phase diagram, we consider in detail particular examples of the general class of solutions.Comment: 71 pages, 22 figures, v2: Typos fixed, comment added in sec. 5.
    corecore