3,562 research outputs found
A technique for making clean holes in metallic piping and components
Testing was conducted to develop a technique of providing clean holes in process piping or in a metal surface accessible from one side only without disassembling the system. The method was performed on sample pieces of piping and worked successfully with no contaminants being found on the inside of the pipe. The materials tested were Inconel 600, 304 stainless steel, Hastelloy X, and ASTM-A53 black steel. The technique was developed such that it could be done in the field with hand-held power tools and a portable tungsten inert gas welding machine
Performance and evaluation of two liquid-metal pumps for sodium-potassium service
Performance tests on liquid metal pumps for sodium potassium loop
The effects of donepezil in Alzheimer's disease - Results from a multinational trial
Donepezil has been shown to be well tolerated and to improve cognition and global function in patients with mild to moderately severe Alzheimer's disease (AD). The current trial was undertaken to investigate further the efficacy and safety of donepezil, in a multinational setting, in patients with mild to moderately severe AD. This 30-week, placebo-controlled, parallel-group study consisted of a 24-week, double-blind treatment phase followed by a 6-week, single-blind, placebo washout. Eight hundred and eighteen patients with mild to moderately severe AD were randomly allocated to treatment with single, daily doses of 5 or 10 mg donepezil, or placebo. The two primary efficacy measures were: a cognitive performance test, the Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog) and a global evaluation, the Clinician's Interview-Based Impression of Change with caregiver input (CIBIC plus). Secondary outcome measures included the Sum of the Boxes of the Clinical Dementia Rating Scale (CDR-SB), a modified Interview for Deterioration in Daily living activities in Dementia (IDDD) and a patient-rated quality of life assessment. Statistically significant improvements in cognitive and global function were observed, as evaluated by ADAS-cog and CIBIC plus, respectively, in both the 5 and 10 mg/day donepezil groups, compared with placebo. Treatment-associated changes were also observed in functional skills, as shown by improved scores on the CDR-SB and the complex-tasks component of the IDDD. A dose-response effect was evident, with the 10 mg/day donepezil group demonstrating greater benefits in all outcome measures than the 5 mg/day group. Donepezil was well tolerated by this patient population and did not produce any clinically significant laboratory test abnormalities. The results of this study confirm that donepezil is effective and well tolerated in treating the symptoms of mild to moderately severe AD
Hyperfine, rotational and Zeeman structure of the lowest vibrational levels of the Rb \tripletex state
We present the results of an experimental and theoretical study of the
electronically excited \tripletex state of Rb molecules. The
vibrational energies are measured for deeply bound states from the bottom up to
using laser spectroscopy of ultracold Rb Feshbach molecules. The
spectrum of each vibrational state is dominated by a 47\,GHz splitting into a
\cog and \clg component caused mainly by a strong second order spin-orbit
interaction. Our spectroscopy fully resolves the rotational, hyperfine, and
Zeeman structure of the spectrum. We are able to describe to first order this
structure using a simplified effective Hamiltonian.Comment: 10 pages, 7 figures, 2 table
Nanostructures in Ti processed by severe plastic deformation
Metals and alloys processed by severe plastic deformation (SPD) can demonstrate superior mechanical properties, which are rendered by their unique defect structures. In this investigation, transmission electron microscopy and x-ray analysis were used to systematically study the defect structures, including grain and subgrain structures, dislocation cells, dislocation distributions, grain boundaries, and the hierarchy of these structural features, in nanostructured Ti produced by a two-step SPD procedure-warm equal channel angular pressing followed by cold rolling. The effects of these defect structures on the mechanical behaviors of nanostructured Ti are discussed
Atomistic studies of transformation pathways and energetics in plutonium
One of the most challenging problems in understanding the structural phase
transformations in Pu is to determine the energetically favored, continuous
atomic pathways from one crystal symmetry to another. This problem involves
enumerating candidate pathways and studying their energetics to garner insight
into instabilities and energy barriers. The purpose of this work is to
investigate the energetics of two transformation pathways for the delta to
alpha' transformation in Pu that were recently proposed [Lookman et al., Phys.
Rev. Lett. 100:145504, 2008] on the basis of symmetry. These pathways require
the presence of either an intermediate hexagonal closed-packed (hcp) structure
or a simple hexagonal (sh) structure. A subgroup of the parent fcc and the
intermediate hexagonal structure, which has trigonal symmetry, facilitates the
transformation to the intermediate hcp or sh structure. Phonons then break the
translational symmetry from the intermediate hcp or sh structure to the final
monoclinic symmetry of the alpha' structure. We perform simulations using the
modified embedded atom method (MEAM) for Pu to investigate these candidate
pathways. Our main conclusion is that the path via hcp is energetically favored
and the volume change for both pathways essentially occurs in the second step
of the transformation, i.e. from the intermediate sh or hcp to the monoclinic
structure. Our work also highlights the deficiency of the current
state-of-the-art MEAM potential in capturing the anisotropy associated with the
lower symmetry monoclinic structure.Comment: 12 pages, 5 figures, accepted for publication in Philos. Ma
Repulsively bound atom pairs in an optical lattice
Throughout physics, stable composite objects are usually formed via
attractive forces, which allow the constituents to lower their energy by
binding together. Repulsive forces separate particles in free space. However,
in a structured environment such as a periodic potential and in the absence of
dissipation, stable composite objects can exist even for repulsive
interactions. Here we report on the first observation of such an exotic bound
state, comprised of a pair of ultracold atoms in an optical lattice. Consistent
with our theoretical analysis, these repulsively bound pairs exhibit long
lifetimes, even under collisions with one another. Signatures of the pairs are
also recognised in the characteristic momentum distribution and through
spectroscopic measurements. There is no analogue in traditional condensed
matter systems of such repulsively bound pairs, due to the presence of strong
decay channels. These results exemplify on a new level the strong
correspondence between the optical lattice physics of ultracold bosonic atoms
and the Bose-Hubbard model, a correspondence which is vital for future
applications of these systems to the study of strongly correlated condensed
matter systems and to quantum information.Comment: 5 pages, 4 figure
Recommended from our members
Visual Analytics for Understanding Spatial Situations from Episodic Movement Data
Continuing advances in modern data acquisition techniques result in rapidly growing amounts of geo-referenced data about moving objects and in emergence of new data types. We define episodic movement data as a new complex data type to be considered in the research fields relevant to data analysis. In episodic movement data, position measurements may be separated by large time gaps, in which the positions of the moving objects are unknown and cannot be reliably reconstructed. Many of the existing methods for movement analysis are designed for data with fine temporal resolution and cannot be applied to discontinuous trajectories. We present an approach utilizing Visual Analytics methods to explore and understand the temporal variation of spatial situations derived from episodic movement data by means of spatio-temporal aggregation. The situations are defined in terms of the presence of moving objects in different places and in terms of flows (collective movements) among the places. The approach, which combines interactive visual displays with clustering of the spatial situations, is presented by example of a real dataset collected by Bluetooth sensors
Loss of the mechanotransducer zyxin promotes a synthetic phenotype of vascular smooth muscle cells.
BACKGROUND: Exposure of vascular smooth muscle cells (VSMCs) to excessive cyclic stretch such as in hypertension causes a shift in their phenotype. The focal adhesion protein zyxin can transduce such biomechanical stimuli to the nucleus of both endothelial cells and VSMCs, albeit with different thresholds and kinetics. However, there is no distinct vascular phenotype in young zyxin-deficient mice, possibly due to functional redundancy among other gene products belonging to the zyxin family. Analyzing zyxin function in VSMCs at the cellular level might thus offer a better mechanistic insight. We aimed to characterize zyxin-dependent changes in gene expression in VSMCs exposed to biomechanical stretch and define the functional role of zyxin in controlling the resultant VSMC phenotype.
METHODS AND RESULTS: DNA microarray analysis was used to identify genes and pathways that were zyxin regulated in static and stretched human umbilical artery-derived and mouse aortic VSMCs. Zyxin-null VSMCs showed a remarkable shift to a growth-promoting, less apoptotic, promigratory and poorly contractile phenotype with ≈90% of the stretch-responsive genes being zyxin dependent. Interestingly, zyxin-null cells already seemed primed for such a synthetic phenotype, with mechanical stretch further accentuating it. This could be accounted for by higher RhoA activity and myocardin-related transcription factor-A mainly localized to the nucleus of zyxin-null VSMCs, and a condensed and localized accumulation of F-actin upon stretch.
CONCLUSIONS: At the cellular level, zyxin is a key regulator of stretch-induced gene expression. Loss of zyxin drives VSMCs toward a synthetic phenotype, a process further consolidated by exaggerated stretch
PETAAL : Protection Environnement et Technologie des Arbres d’Alignements
Programme d’études coordonné par le centre technique Plante & Cité
Avec le soutien du Fond Unique Interministériel et du Conseil Régional des Pays de la Loir
- …
