2,635 research outputs found

    Ultrafast absorption kinetics of NADH in folded and unfolded conformations

    Get PDF
    The non-radiative energy transfer is shown to occur on a ~3ps time scale for NADH in the folded form in H2O. Addition of methanol thermodynamically favours the open form, for which energy transfer does not occur

    Nutrient supply to anticyclonic meso-scale eddies off western Australia estimated with artificial tracers released in a circulation model

    Get PDF
    The phytoplankton distribution off western Australia in the period from April to October is unique in that high biomass is generally associated with anticyclonic eddies and not with cyclonic eddies. As the western Australian region is oligotrophic this anomalous feature must be related to differing nutrient supply pathways to the surface mixed layer of cyclonic and anticyclonic eddies. A suite of modelled abiotic tracers suggests that cyclonic eddies are predominantly supplied by diapycnal processes that remain relatively weak until June–July, when they rapidly increase because of deepening surface mixed layers, which start to tap into the nutrient-replete waters below the euphotic zone. To the contrary, we find that anticyclonic eddies are predominantly supplied by injection of shelf waters, which carry elevated levels of inorganic nutrients and biomass. These injections start with the formation of the eddies in April–May, continue well into the austral winter and reach as far as several hundred kilometers offshore. The diapycnal supply of nutrients is suppressed in anticyclonic eddies since the injection of warm, low-salinity shelf waters delays the erosion of the density gradient at the base of the mixed layer. Our results are consistent with the observed seasonal cycles of chlorophyll a and observation of particulate organic matter export out of the surface mixed layer of an anticyclonic eddy in the region

    Multiple packets of neutral molecules revolving for over a mile

    Get PDF
    The level of control that one has over neutral molecules in beams dictates their possible applications. Here we experimentally demonstrate that state-selected, neutral molecules can be kept together in a few mm long packet for a distance of over one mile. This is accomplished in a circular arrangement of 40 straight electrostatic hexapoles through which the molecules propagate over 1000 times. Up to 19 packets of molecules have simultaneously been stored in this ring structure. This brings the realization of a molecular low-energy collider within reach

    Fidelity and level correlations in the transition from regularity to chaos

    Full text link
    Mean fidelity amplitude and parametric energy--energy correlations are calculated exactly for a regular system, which is subject to a chaotic random perturbation. It turns out that in this particular case under the average both quantities are identical. The result is compared with the susceptibility of chaotic systems against random perturbations. Regular systems are more susceptible against random perturbations than chaotic ones.Comment: 7 pages, 1 figur

    The k-Point Random Matrix Kernels Obtained from One-Point Supermatrix Models

    Full text link
    The k-point correlation functions of the Gaussian Random Matrix Ensembles are certain determinants of functions which depend on only two arguments. They are referred to as kernels, since they are the building blocks of all correlations. We show that the kernels are obtained, for arbitrary level number, directly from supermatrix models for one-point functions. More precisely, the generating functions of the one-point functions are equivalent to the kernels. This is surprising, because it implies that already the one-point generating function holds essential information about the k-point correlations. This also establishes a link to the averaged ratios of spectral determinants, i.e. of characteristic polynomials

    Thermal roughening of an SOS-model with elastic interaction

    Get PDF
    We analyze the effects of a long-ranged step-step interaction on thermal roughening within the framework of a solid-on-solid model of a crystal surface by means of Monte Carlo simulation. A repulsive step-step interaction is modeled by elastic dipoles located on sites adjacent to the steps. In order to reduce the computational effort involved in calculating interaction energy based on long-ranged potentials, we employ a multi-grid scheme. As a result of the long-range character of the step interaction, the roughening temperature increases drastically compared to a system with short-range cutoff as a consequence of anti-correlations between surface defects

    Supersymmetric Extensions of Calogero--Moser--Sutherland like Models: Construction and Some Solutions

    Full text link
    We introduce a new class of models for interacting particles. Our construction is based on Jacobians for the radial coordinates on certain superspaces. The resulting models contain two parameters determining the strengths of the interactions. This extends and generalizes the models of the Calogero--Moser--Sutherland type for interacting particles in ordinary spaces. The latter ones are included in our models as special cases. Using results which we obtained previously for spherical functions in superspaces, we obtain various properties and some explicit forms for the solutions. We present physical interpretations. Our models involve two kinds of interacting particles. One of the models can be viewed as describing interacting electrons in a lower and upper band of a one--dimensional semiconductor. Another model is quasi--two--dimensional. Two kinds of particles are confined to two different spatial directions, the interaction contains dipole--dipole or tensor forces.Comment: 21 pages, 4 figure

    Intersubband Quantum Disc-in-Nanowire Photodetectors with Normal-incidence Response in the Long-wavelength Infrared

    Full text link
    Semiconductor nanowires offer great potential for realizing broadband photodetectors that are compatible with silicon technology. However, the spectral range of such detectors has so far been limited to selected regions in the ultraviolet, visible and near infrared. Here, we report on broadband nanowire heterostructure array photodetectors exhibiting a photoresponse from the visible to long-wavelength infrared. In particular, the infrared response from 3-20 um is enabled by normal incidence excitation of intersubband transitions in low-bandgap InAsP quantum discs synthesized axially within InP nanowires. The optical characteristics are explained by the excitation of the longitudinal component of optical modes in the photonic crystal formed by the nanostructured portion of the detectors, combined with a non-symmetric potential profile of the discs resulting from synthesis. Our results provide a generalizable insight into how broadband nanowire photodetectors may be designed, and how engineered nanowire heterostructures open up new fascinating opportunities for optoelectronics

    Survival Probability of a Doorway State in regular and chaotic environments

    Full text link
    We calculate survival probability of a special state which couples randomly to a regular or chaotic environment. The environment is modelled by a suitably chosen random matrix ensemble. The exact results exhibit non--perturbative features as revival of probability and non--ergodicity. The role of background complexity and of coupling complexity is discussed as well.Comment: 19 pages 5 Figure

    Squeezed between shells? On the origin of the Lupus I molecular cloud. - II. APEX CO and GASS HI observations

    Get PDF
    Accepted for publication in a future issue of Astronomy & Astrophysics. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.Context. The Lupus I cloud is found between the Upper-Scorpius (USco) and the Upper-Centaurus-Lupus (UCL) sub-groups of the Scorpius-Centaurus OB-association, where the expanding USco H I shell appears to interact with a bubble currently driven by the winds of the remaining B-stars of UCL. Aims. We investigate if the Lupus I molecular could have formed in a colliding flow, and in particular, how the kinematics of the cloud might have been influenced by the larger scale gas dynamics. Methods. We performed APEX 13CO(2–1) and C 18O(2–1) line observations of three distinct parts of Lupus I that provide kinematic information on the cloud at high angular and spectral resolution. We compare those results to the atomic hydrogen data from the GASS H i survey and our dust emission results presented in the previous paper. Based on the velocity information, we present a geometric model for the interaction zone between the USco shell and the UCL wind bubble. Results. We present evidence that the molecular gas of Lupus I is tightly linked to the atomic material of the USco shell. The CO emission in Lupus I is found mainly at velocities between vLSR = 3–6 km s−1 which is in the same range as the H i velocities. Thus, the molecular cloud is co-moving with the expanding USco atomic H i shell. The gas in the cloud shows a complex kinematic structure with several line-of-sight components that overlay each other. The non-thermal velocity dispersion is in the transonic regime in all parts of the cloud and could be injected by external compression. Our observations and the derived geometric model agree with a scenario where Lupus I is located in the interaction zone between the USco shell and the UCL wind bubble. Conclusions. The kinematics observations are consistent with a scenario where the Lupus I cloud formed via shell instabilities. The particular location of Lupus I between USco and UCL suggests that counter-pressure from the UCL wind bubble and pre-existing density enhancements, perhaps left over from the gas stream that formed the stellar subgroups, may have played a role in its formation.Peer reviewedFinal Accepted Versio
    corecore