10,398 research outputs found
Exponential torsion growth for random 3-manifolds
We show that a random 3-manifold with positive first Betti number admits a tower of cyclic covers with exponential torsion growth
Progress of the Felsenkeller shallow-underground accelerator for nuclear astrophysics
Low-background experiments with stable ion beams are an important tool for
putting the model of stellar hydrogen, helium, and carbon burning on a solid
experimental foundation. The pioneering work in this regard has been done by
the LUNA collaboration at Gran Sasso, using a 0.4 MV accelerator. In the
present contribution, the status of the project for a higher-energy underground
accelerator is reviewed. Two tunnels of the Felsenkeller underground site in
Dresden, Germany, are currently being refurbished for the installation of a 5
MV high-current Pelletron accelerator. Construction work is on schedule and
expected to complete in August 2017. The accelerator will provide intense, 50
uA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically
relevant nuclear reactions with unprecedented sensitivity.Comment: Submitted to the Proceedings of Nuclei in the Cosmos XIV, 19-24 June
2016, Niigata/Japa
Peer victimization and substance use: Understanding the indirect effect of depressive symptomatology across gender
OBJECTIVE:
Peer victimization in school is common, with emerging literature suggesting that it may also increase risk for substance abuse. Yet, little is known about the underlying mechanisms within this risk pathway. The objective of this study is to use a prospective 3-wave design to examine the mediating role of depressive symptomatology on the relationship between peer victimization and substance use, as well as examine if the pathway varies based on gender.
METHOD:
801 youth between 6th and 12th grade completed surveys across three years, which included measures on school peer victimization, depression symptomatology and substance use. Models tested the mediational pathway between victimization, depressive symptoms, and substance use. Models were stratified by gender.
RESULTS:
Controlling for grade and the effect of each variable across waves, a significant indirect effect of peer victimization on substance use through depressive symptoms was found for females, with a non-significant indirect effect for males.
CONCLUSION:
Results suggest that female youth who are victimized by peers engage in substance use behaviors, at least in part, due to increases in depressive symptoms. Given its effect on depression, female victims may therefore benefit from coping skills training that targets emotion regulation and distress tolerance skills in order to combat increased risk for substance use behaviors as a coping response to their victimization. Further research is warranted to better understand the risk pathway for male youth who also experience peer victimization
The Effect of Splayed Pins on Vortex Creep and Critical Currents
We study the effects of splayed columnar pins on the vortex motion using
realistic London Langevin simulations. At low currents vortex creep is strongly
suppressed, whereas the critical current j_c is enhanced only moderately.
Splaying the pins generates an increasing energy barrier against vortex
hopping, and leads to the forced entanglement of vortices, both of which
suppress creep efficiently. On the other hand splaying enhances kink nucleation
and introduces intersecting pins, which cut off the energy barriers. Thus the
j_c enhancement is strongly parameter sensitive. We also characterize the angle
dependence of j_c, and the effect of different splaying geometries.Comment: 4 figure
Std fimbriae-fucose interaction increases Salmonella-induced intestinal inflammation and prolongs colonization
Author summary The intestinal epithelium is a crucial biological interface, interacting with both commensal and pathogenic microorganisms. It’s lined with heavily glycosylated proteins and glycolipids which can act as both attachment sites and energy sources for intestinal bacteria. Fut2, the enzyme governing epithelial α1,2-fucosylation, has been implicated in the interaction between microbes and intestinal epithelial cells. Salmonella is one of the most important bacterial gastrointestinal pathogens affecting millions of people worldwide. Salmonella possesses fimbrial and non-fimbrial adhesins which can be used to adhere to host cells. Here we show that Salmonella expresses Std fimbriae in the gastrointestinal tract in vivo and exploit Std fimbriae to bind fucosylated structures in the mucus and on the intestinal epithelium. Furthermore, we demonstrate that the Std fimbriae-fucose interaction is necessary for bacterial colonization of the intestine and for triggering intestinal inflammation. These data lend new insights into bacterial adhesion-epithelial interactions which are essential for bacterial pathogenesis and key factors in determining tissue tropism and host susceptibility to infectious disease
Section Extension from Hyperbolic Geometry of Punctured Disk and Holomorphic Family of Flat Bundles
The construction of sections of bundles with prescribed jet values plays a
fundamental role in problems of algebraic and complex geometry. When the jet
values are prescribed on a positive dimensional subvariety, it is handled by
theorems of Ohsawa-Takegoshi type which give extension of line bundle valued
square-integrable top-degree holomorphic forms from the fiber at the origin of
a family of complex manifolds over the open unit 1-disk when the curvature of
the metric of line bundle is semipositive. We prove here an extension result
when the curvature of the line bundle is only semipositive on each fiber with
negativity on the total space assumed bounded from below and the connection of
the metric locally bounded, if a square-integrable extension is known to be
possible over a double point at the origin. It is a Hensel-lemma-type result
analogous to Artin's application of the generalized implicit function theorem
to the theory of obstruction in deformation theory. The motivation is the need
in the abundance conjecture to construct pluricanonical sections from flatly
twisted pluricanonical sections. We also give here a new approach to the
original theorem of Ohsawa-Takegoshi by using the hyperbolic geometry of the
punctured open unit 1-disk to reduce the original theorem of Ohsawa-Takegoshi
to a simple application of the standard method of constructing holomorphic
functions by solving the d-bar equation with cut-off functions and additional
blowup weight functions
Deterministic Partial Differential Equation Model for Dose Calculation in Electron Radiotherapy
Treatment with high energy ionizing radiation is one of the main methods in
modern cancer therapy that is in clinical use. During the last decades, two
main approaches to dose calculation were used, Monte Carlo simulations and
semi-empirical models based on Fermi-Eyges theory. A third way to dose
calculation has only recently attracted attention in the medical physics
community. This approach is based on the deterministic kinetic equations of
radiative transfer. Starting from these, we derive a macroscopic partial
differential equation model for electron transport in tissue. This model
involves an angular closure in the phase space. It is exact for the
free-streaming and the isotropic regime. We solve it numerically by a newly
developed HLLC scheme based on [BerCharDub], that exactly preserves key
properties of the analytical solution on the discrete level. Several numerical
results for test cases from the medical physics literature are presented.Comment: 20 pages, 7 figure
Metallic liquid hydrogen and likely Al2O3 metallic glass
Dynamic compression has been used to synthesize liquid metallic hydrogen at
140 GPa (1.4 million bar) and experimental data and theory predict Al2O3 might
be a metallic glass at ~300 GPa. The mechanism of metallization in both cases
is probably a Mott-like transition. The strength of sapphire causes shock
dissipation to be split differently in the strong solid and soft fluid. Once
the 4.5-eV H-H and Al-O bonds are broken at sufficiently high pressures in
liquid H2 and in sapphire (single-crystal Al2O3), electrons are delocalized,
which leads to formation of energy bands in fluid H and probably in amorphous
Al2O3. The high strength of sapphire causes shock dissipation to be absorbed
primarily in entropy up to ~400 GPa, which also causes the 300-K isotherm and
Hugoniot to be virtually coincident in this pressure range. Above ~400 GPa
shock dissipation must go primarily into temperature, which is observed
experimentally as a rapid increase in shock pressure above ~400 GPa. The
metallization of glassy Al2O3, if verified, is expected to be general in strong
oxide insulators. Implications for Super Earths are discussed.Comment: 8 pages, 5 figures, 14th Liquid and Amorphous Metals Conference, Rome
201
- …
